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Abstract— Motivated by a desire to use compressed sensing
in Atomic Force Microscopy, we revisit the Proximate Time-
Optimal Servomechanism(PTOSω) regulator we developed pre-
viously [15] for the harmonic oscillator, giving a more detailed
description of its construction. Then, we extend that previous
work to include set-point tracking. We show that, in contrast
to regulator control, the time-optimal switching curve becomes
asymmetric, and in fact the problem can be recast as a regulator
with asymmetric actuator limits. We then develop a PTOSω
approximation and present simulation and experimental results.

I. INTRODUCTION

The traditional Atomic-Force-Microscope (AFM) imaging
method is to raster scan the sample with an atomically sharp
probe. Raster scanning is not only a very time consuming
process, it can also lead to damaging either the sample or
the AFM probe tip or both. Traditionally, efforts to increase
imaging speed have focused on increasing the raster scan
rate via advanced control algorithms [1], [2].

More recently, researchers have begun to investigate using
more efficient scan patterns since often the raster scan spends
significant time over uninteresting regions [3]. In a similar
vein, [4] suggested a method of AFM imaging whereby a
random sample of point-to-point measurements are taken.
The sample topology is then reconstructed using the theory of
compressed sensing [5]. Taking this random sample of point-
to-point measurements reduces the tip-sample interaction and
can improve the integrity of both the sample and AFM tip.

Minimizing the imaging time in this scheme requires
that the rest-to-rest maneuver times between point measure-
ments be minimized. AFM stages are typically driven by
with piezoelectric actuators. The linear dynamics of these
actuators are characterized by a series of resonances and
anti-resonances which lack of a rigid-body mode [6]. This
can also be seen in the frequency response of the AFM
stage considered in [1]. Hence, even the simplest model for
such a stage will be second-order with complex poles. This
contrasts with many other mechatronic systems like hard-
disk drives which are often reduced to the simplified model
of G(s) = a/s2.

For a linear time-invariant system, Pontryagin’s Maximal
Principle leads to a time-optimal control that is bang-bang
[7]. Excellent resources for synthesizing these controls as
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feedback laws can be found in [8]–[10]. Unfortunately,
the bang-bang feedback control is impractical. In any real
control system, there will be process and measurement noise,
uncertainty in the system parameters, and imperfect actuators
which will cause the control to chatter between its maximum
and minimum values.

A large body of work exists which develops methods to
combat this chattering problem. However, much it focuses
on rigid-body systems. In [11], a robust control law for
a double-integrator plant is developed using sliding mode
techniques. Other researchers have developed the Proxi-
mate Time-Optimal Servomechanism (PTOS) for a double-
integrator plant [12] and a triple-integrator plant [13].

Reference [14] suggests pre-computing the time-optimal
trajectory which is then tracked with a stabilizing trajectory
tracking control law. At the end of this reference trajectory,
an end-game control law is implemented to eliminate any
final error. A downside to this method is that it requires
pre-computation of individual trajectories for each initial
condition and target state.

In [15], we developed a near time-optimal regulator con-
troller for a system with purely imaginary eigenvalues, which
we called the PTOSω. In contrast to the controllers for rigid-
body plants, this control law is not immediately extendable to
set-point tracking. To implement set-point tracking for those
systems, the switching curve, and hence the PTOS “tube”
is simply translated in the phase plane. As we discuss in
Section III, for the simple oscillator system performing ref-
erence tracking, not only does the switching curve becomes
asymmetric but our control law must be modified to provide
a constant input at steady state.

This paper is organized as follows. In Section II, we review
our previous work with additional details of the method for
developing the PTOSω regulator in order to help guide our
development of the reference tracking PTOSω. We begin the
extension to set-point tracking by showing in Section III
that the time-optimal solution for a holdable set point is
governed by an asymmetric switching curve. We show this
curve is a translated copy of the regulator switching curve
for a system with asymmetric control limits, which in fact, is
the switching curve in the error coordinates. This observation
helps us to construct the time-optimal reference tracking
controller as a feedback control law. Using this development,
we then extend the PTOSω controller of Section II to
the case of set-point tracking in Section IV and give a
discussion of its stability in Section V. In Section VI, we
show experimental results for this set-point tracking PTOSω
and provide concluding remarks with a short discussion of



the case with damping in Section VII.

II. OVERVIEW OF REGULATOR PTOSω

Suppose we have a second-order system with imaginary
eigenvalues, described in state space by

ẋ = Ax+Bu(t) (1)

A =

[
0 1
−ω2 0

]
, B =

[
0
bo

]
where the output y = x1 is the position and x2 is the velocity.
It will be useful to define c = b0

ω2 . The system is driven by
a bounded control,1

u ∈ [−1, +1]. (2)

In [15] we modified the time-optimal regulator controller into
a near time-optimal regulator, which we called the PTOSω
for which we proved stability given an initial state anywhere
in R2. For brevity, here we assume that the initial state is a
holdable equilibrium state since ultimately we are interested
in rest-to-rest movements. These holdable equilibria are
given by xeq = −A−1Buss, or, noting (2),

x2,eq = 0 (3)
x1,eq ∈ [−c, +c]. (4)

The time-optimal feedback control law is characterized by a
switching curve, which is comprised of an infinite sequence
of half ellipses. The first set of such ellipses gives the control
law as [8]–[10]

u = sgn(fto(x1)− x2) (5)

fto(x1) = −sgn(x1)ω
√

2c|x1| − x21, |x1| ≤ 2c (6)

sgn(ξ) =


−1, ξ < 0

0, ξ = 0

+1, ξ > 0.

(7)

A. Development of fp(x1)

Consider the controller given by,

up(t) = sat
[
k2(−x2 + fp(x1))

]
. (8)

It will be useful for the ensuing discussions to make use of
the following divisions of the state space:

T =
{
x : | − x2 + fp(x1)| ≤ 1

k2
, x1 ∈ [−2c, 2c]

}
(9)

B =
{
x : x ∈ T , x1 ∈ [−c, c]} (10)

L =
{
x : x ∈ B, x1 ∈ [−x`, x`]} (11)

U− =
{
x : x 6∈ T , x2 ≥ fp(x1) +

1

k2
} (12)

U+ =
{
x : x 6∈ T , x2 ≤ fp(x1) +

1

k2
} (13)

1It is quite unlikely that a particular system will saturate at ±1. This
convention is made only for convenience here and such systems can be
easily dealt with changing bo to b̄o = boM where M is the new saturation
limit.

where 0 < |x`| < c, and U+ and U− are the regions of the
state space which result in a saturated control, while x ∈ T
results in an unsaturated control and L ⊂ B ⊂ T .

First, note that a saturator and a gain gives a finite slope
approximation to the the sgn(·) function. By making fp(x1)
approximate fto(x1) and making k2 large, then in (8) we
have an approximation to (5). Furthermore, we can employ
a linear feedback controller near the origin (i.e., for x1 ∈ L)
by defining fp as the continuously differentiable (for x1 ∈
(−2c, 2c)) function, defined piecewise as

fp(x1) =

{
f`(x1), |x1| ≤ x`
fn`(x1), x` < |x1| < 2c

(14)

where we require that

f`(x`) = fn`(x`) (15)
f ′`(x`) = f ′n`(x`). (16)

By making f`(x1) a linear function of x1, then for x1 ∈ L,
(8) describes the familiar equation for linear state feedback
with the sat(·) function enforcing respect for the control
limits. Specifically, define the linear portion of fp as

f`(x1) := −
(k1
k2

)
x1, |x1| < x`. (17)

We construct the entire fp by connecting this linear f`
to vertical translations of fto such that (15) and (16) are
satisfied. Taking the Taylor approximation of (6) about x`
yields

fto(x1) ≈ − 1

k2
− k1
k2
x1 (18)

where

k2 =

√
2cx` − x2`
ωcx`

and k1 =
c− x`
cx`

. (19)

This is shown as the black curve in Figure 1. Since the
switching curve must go through the origin, add the x2-
intercept, 1

k2
, to (18) to yield f`(x1), the blue-dashed curve

in Figure 1. We connect the parts of fto outside [−x`, x`] to
f` by shifting the right portion of fto up by 1

k2
and the left

portion down by 1
k2

. Together, this yields the concatenation
of the all the dashed curves in Figure 1. We thus obtain

f`(x1) = −k1
k2
x1 (20)

fn`(x1) = sgn(x1)

[
− ω

√
2c|x1| − x21 +

1

k2

]
. (21)

Note that if x` → 0 then k2 → ∞ and 1
k2
→ 0 and we

recover (5).
Theorem 1: The control law described by (8), (20), and

(21) leads to a stable closed-loop system.
Proof: For the full proof, see our previous work in [15].

However, the features relevant to this paper are that, provided
we restrict |x`| < 0.4c: (i) states within region B remain in B
which we showed by examining the time derivative of u(t)
along the upper and lower boundaries of B; and (ii) states
in B tend asymptotically to the origin which we showed by
giving a Lyapunov function for region B.
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Fig. 1: Illustration of the development of fp(x1). The red
curve depicts fto(x1) and the solid black curve is the Taylor
approximation of fto(x1) about x`. We shift the solid black
curve up by 1

k2
, giving f`(x1) (dashed-blue). Then, from

[x`, 2c], we shift fto(x1) up by 1
k2

and from [−2c, x`]

we shift fto(x1) down by 1
k2

. This gives fp(x1) as the
concatenation of the dashed curves.

III. REFERENCE TRACKING
TIME-OPTIMAL FEEDBACK CONTROLLER

Suppose that rather than time-optimal regulation, we
would like our plant to track changes in a set point xr as fast
as possible. For plants with imaginary eigenvalues, this new
requirement changes the structure of the switching curve,
giving it an asymmetry. This is in sharp contrast to rigid-
body plants where the switching curve is simply translated
in the phase plane. This difference makes set-point tracking
in both the time-optimal and PTOSω case more difficult than
it is for rigid-body plants since the switching curve becomes
asymmetric and changes for every new set point.

To show how this difference comes about, we review
the standard derivation of the switching curve [8]–[10]. We
minimize the cost

J =

∫ tf

0

1 · dτ (22)

subject to (1), x(0) = xo, and x(tf ) = xr which gives the
Hamiltonian

H = 1 + pT (Ax+Bu) (23)

where ṗ = −AT p defines the adjoint dynamics. Given the
boundedness of u(t), the minima of H are given by

u = −sgn(pTB) = −sgn(p2(t)bo). (24)

Thus, the control switches at times ts when the costate p2(t)
vanishes. For the first and last switch, this time is unknown
since these roots depend on the boundary conditions for p(t)
which are unknown. However we make the observation that,
since the costate rotates in its phase plane at a rate of ω,
no switch can last longer than π/ω units of time. Thus, we

can locate the final leg of any time-optimal trajectory by
integrating the system in (1) backwards for π/ω units of
time with u = ±1. This is the curve labeled fto in Figure 1
if x(tf ) = 0. Since the control is bang-bang, trajectories
approaching this curve must be under the control u = ∓1,
and thus the control switches upon the state reaching the
curve, prompting us to call it the switching curve. Repeating
the process of backwards integration starting from the first
segment of fto locates the next segment of the switching
curve. However, since the first segments are half ellipses with
length 2c, we need only concentrate on these first segments
since we are interested in holdable equilibria, x1eq ∈ [−c c].

The typical derivation of the switching curve performs this
process beginning at the origin [8]–[10], [16], which yields
the regulator of (5). To derive the curve for target states
other than the origin, we must integrate backwards starting
at the desired reference, xr. However, to formulate this as a
feedback control law, it is more instructive to examine the
system in the error coordinates, xe = x−xr. Note that when
xe = 0, we must apply the constant control

uss(t) =
x1r
c
, ∀t ≥ tf (25)

if we are to hold the state at xr. The error dynamics are
described by

ẋe = Axe +Axr +Bu (26)

= Axe +

[
0
bo

](
u− 1

c
x1r

)
. (27)

Thus, driving the system to x(t > tf ) = xr is equivalent to
driving the error state xe to the origin if the error dynamics
are driven by an asymmetric control ū(t), namely

ū+ = 1− 1

c
x1r. (28)

ū− = −1− 1

c
x1r, (29)

It will be convenient to refer to (29) and (28) together as
ū±. We can construct the time-optimal switching curve for
the error coordinates by solving (27) backwards in time from
the origin of the error phase-plane by integrating

xe(0) = ū±
∫ 0

T

eA(0−τ)Bdτ (30)

which yields [
x1e
x2e

]
=

ū±c(1− cosω(−T ))

ū± boω sinω(−T ),

 (31)

for T ≤ π/ω. By eliminating time, we can solve for x2e as
a function of x1e which is fto,e,

f−to,e = ω
√

2cū−x1e − x21e, 2cū− < x1e < 0 (32)

f+to,e = −ω
√

2cū+x1e − x21e, 0 ≤ x1e < 2cū+. (33)

We use the convention that the superscript “−” denotes
quantities of the left-half phase-plane switching curve and
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Fig. 2: For target of x1r = −0.5c, the plot shows fto,e in the
error coordinates, illustrating the resulting asymmetry. Note
that we have set fto,e = 0 outside the first set of time-optimal
curves.

Fig. 3: Block diagram of time-optimal reference tracking
controller.

“+” for the right-half phase-plane switching curve through
the rest of this paper. This switching curve is plotted in
Figure 2. It is worth pointing out that the same result, less
a translation of x1r, will be obtained by generating the
switching curve in the un-shifted coordinates by integrating
(1) backwards from xr.

Note that the ellipse in the negative half-plane is located at
center and semi-major axis length of cū− while the ellipse in
the positive half-plane has center and semi-major axis length
of cū+ so that each ellipse has a different size and a different
center. We see then that for reference tracking, the switching
curve loses the symmetry of the regulator case.

Though the input to the error dynamics is ū ∈ [ū−, ū+],
the input to the actual plant is still u ∈ [−1, +1], which we
obtain by adding back the required steady-state feedforward
input, uss = x1r

c . This development can be implemented as
a feedback control law as

u =

{
sgna[fto,e(x1e)− x2e] + x1r

c , |x1| ≤ 2c

sgna(−x2e) + x1r

c , otherwise
(34)

where we define the asymmetric signum is

sgna(ξ) =


ū+, ξ > 1

0, |ξ| ≤ 1

ū−, ξ < −1.

(35)

This control law is illustrated in the block diagram shown
in Figure 3. This scheme has the desirable feature that it

applies the necessary constant control to hold the state at
x(t) = xr, ∀ t ≥ tf . Note that for states with |x1(0)| > 2c
(i.e., x1e /∈ [2cū−, 2cū+]), the control is not time-optimal as
we have essentially set fto,e to zero for those states. However,
since the goal of our control system is to move between
steady-state equilibrium points, it is reasonable always to
expect that |x1| < 2c since ±c is the largest magnitude of a
holdable point. The approximation implemented in (34) was
suggested in [10] and accounts for the possibility of a large
disturbance such that |x1| ≥ 2c.

IV. REFERENCE TRACKING PTOSω
In a similar vein to the regulator PTOSω, we have de-

veloped a PTOS-like controller for the reference tracking
situation. Examining Figure 2, the first challenge immedi-
ately presents itself. If we are to maintain the continuous
differentiability of the PTOS function, which we now call
fp,ref (x1e), we cannot have x−` = x+` since at a single
x` the curves f+to,e and f+to,e have different slopes, i.e.,
f ′−to,e(x`) 6= f ′+to,e(x`). Rather, we need to enforce

M =
k−1
k−2

=
k+1
k+2

. (36)

Because the curves are geometrically similar, choosing x−`
and x+` as a fraction of the distance to the center of each
ellipse gives us what we need, i.e., for 0 < λ < 1, choose

x+` = λcū+ (37)

x−` = λc|ū−|. (38)

We can easily calculate k±1 and k±2 from (19) by replacing
c with c̄ = c|ū±| and x` with x±` from (37) and (38). Thus,
we define fp,ref as

fp,ref =
ω
√

2cū−x1e − x21e − 1
k−2
, −2c < x1e ≤ −x−`

−Mx1, −x−` < x1e < x+`

−
[
ω
√

2cū+x1e − x21e − 1
k+2

]
, x+` ≤ x1e < 2c.

In order for the control, and consequently, region T to be
smoothly defined, we need a single gain, k2. It turns out that
a reasonable choice is to choose

k2 = max
{
k−2 , k

+
2

}
(39)

and then define the PTOSω reference tracking control as

ūp,ref = sata {k2[fp,ref (x1e)− x2e]} (40)

where the asymmetric saturator is given by

sata(ξ) =


ū+, ξ > ū+

ξ, ū− ≤ ξ ≤ ū+

ū−, ξ < ū−.

(41)

Just as in the time-optimal case, for use in the regular coor-
dinates, we add back the required steady-state feedforward
control which yields

up,ref = sata {k2[fp,ref (x1e)− x2e]}+
x1r
c
. (42)
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Fig. 4: For x1r = −0.5c, λ = 0.1, and the plant in (47), the
figure shows the PTOSω region as well as ˙̄up,ref evaluated
along the upper and lower saturation boundaries. Since for
the state to remain trapped in B, we need ˙̄up,ref < 0 along
the lower boundary and ˙̄up,ref > 0 along the upper boundary,
this plot shows B is invariant (each black ’×’ marks the
relevant zero crossing).

V. STABILITY OF THE REFERENCE TRACKING PTOS

A generalized stability analysis has yet to be done. How-
ever, if we consider the plant in (47) of the next section
(i.e., the plant upon which our results are based), it is
straightforward to show using the techniques we described
in [15] that for a particular choice of x1r and λ (i.e., x`), we
have a stable closed-loop system. For the simulations in the
next section, we will use x1r = −0.5c and λ = 0.1. To see
that xe ∈ B does not exit via the saturation boundaries, we
consider the time derivative of ūp,ref (t) along the boundaries
of B which is

˙̄up,ref = f ′p,ref (x1e)ū
± + k2f

′
p,ref (x1e)fp,ref (x1e)

+ k2ω
2x1e − k2boū± (43)

where ˙̄up,ref > 0 along the upper boundary and ˙̄up,ref < 0
along the lower boundary implies that the state does not exit.

Using these parameters and a forward difference approx-
imation to calculate f ′p,ref , we can plot (43) evaluated
along both the upper and lower boundaries. This is shown
in Figure 4. Indeed, we see that ˙̄up,ref evaluated at the
upper boundary becomes negative at cūmin. Similarly, ˙̄up,ref
evaluated along the lower boundary becomes positive at
cūmax which indicates that a state xe ∈ B remains in B.
To see that xe ∈ B tends asymptotically to the origin (of

the error space), we use the Lyapunov function

V (xe) :=
1

2
x22e +

∫ x1e

0

p(s)ds (44)

p(x1e) := ω2x1e − bok2fp,ref (x1e). (45)

To see that V (xe) > 0, note from Figure 4 that for xe ∈
B, sgn(x1e)fp(x1e) < 0 so that the integral in (44) always

R L

C

Fig. 5: Schematic of the LRC circuit used to test the control
law.

produces a positive area. The negative semi-definiteness of
V̇ (x) and appeal to LaSalle’s invariance principle follow as
they did in [15] (this being the same Lyapunov function as
was used there).

VI. REFERENCE TRACKING PTOSω RESULTS

We tested the PTOSω reference tracking control law given
by (42) on the LRC circuit shown in Figure 5 which is
described by the transfer function

Vo(s)

Vin(s)
=

1/(LC)

s2 + R
L s+ 1

LC

. (46)

If we could construct this circuit with R = 0, we would
have exactly the plant described in (1). Of course, this is
impossible but we can get close. We constructed this circuit
with a capacitor and inductor which have the nominal values
C = 0.235 µF and L = 100 mH. The inductor has an
internal resistance of R = 82 Ω. In trying to construct a
passive circuit with extremely high Q, note that choosing a
larger inductor tends to increases its internal resistance. Of
course, we could try to increase ω =

√
1/LC by choosing

smaller capacitance values and could thus theoretically get
arbitrarily low damping. However, since the control law is
implemented digitally on an FPGA, this approach is limited
by the achievable sample rate. The values chosen represent
a compromise between these competing concerns.

We performed a white noise system identification which
yielded

G(s) =
4.478e7

s2 + 743.5s+ 4.449e7
. (47)

Thus, ζ = 0.063, ω = 6669.7 rad/s, bo = 4.478e07.
We programmed the control law in (42) into a National
Instruments Compact RIO (NI cRIO-9082) FPGA, using a
sample rate of 100 kHz. Because our control law utilizes both
states of the system, we implemented a digital prediction
observer. We chose observer gains L = [0.440 4663.6]T

which, in the linear region, place the observer poles at four
times the natural frequency of the plant and increase the
damping ratio to ζ = 0.95.

We induced an initial condition by issuing a step command
of Vin = 1 volt to the system. After a settling period, we
turned on the PTOSω reference tracking controller with a
set-point of x1r = − 0.5c. For this experiment we set
x` = 0.1c. The time-histories of these results are shown in
Figure 6 along with the simulated time-optimal trajectories
for comparison. Figure 7 shows the phase-plane plots for
the simulated and experimental systems. As predicted above,
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Fig. 6: Comparison between simulation and experimental re-
sults for the reference tracking PTOSω. The initial condition
is set to x1 = 1 and the reference is x1r = −0.5c. The
controller from both simulation and experiments is driven
by the states from a digital observer. Note that in the time
series plot of x2, we have plotted the estimate, x̂2, for the
experimental case since this is the only data available.

the states do indeed remain trapped in B and, furthermore,
it can be seen that even for a plant with small but non-
zero damping, our control law performs well, with both the
simulation and experiment agreeing nicely.

VII. CONCLUSIONS AND REMARKS ON DAMPING

In this paper, we have given a detailed derivation of
the PTOSω which we then extended to include reference
tracking. We also verified these controllers in both simulation
and physical experiment on an LRC circuit. While we
have argued the stability of the reference tracking PTOSω
controller based upon our previous stability proof of the
PTOSω regulator, a rigorous stability proof for the tracking
controller is still an area of future work.

To properly include damping will be significantly more
challenging. The switching curve in that case is described by
a logarithmic spiral. Though it is still possible to eliminate
time from the equations as we did with (31), it is not
possible to isolate x1 or x2 on one side. Nonetheless, the
switching curve is easily generated via backwards integration
and can then be represented in a lookup-table. The techniques
discussed in Sections II-A and IV can be used to create a
“numeric” PTOSω controller, e.g., by numerically calculat-
ing the derivatives of fto to generate k±1 and k±2 . Challenges
still exist, however, since fto is represented in a lookup-
table and fto changes for every reference input. For our goal
of visiting a pre-determined set of points for a compressed
sensing scheme, it is also possible to generate a family of
switching curves offline and then program the controller to
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Fig. 7: Phase-plane trajectories in the error coordinates of
both the simulated and experimental systems.

download the next needed curve while the current set point
is being tracked.
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