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Abstract— Acquiring Atomic Force Microscope images using
compressed sensing requires the piezo X-Y stage to track a
sequence of step commands. To achieve fast tracking of such
commands requires a precise system model. We show that once
such a model is obtained, standard linear feedback can be
used to achieve excellent tracking of step inputs. The system
under consideration has a significant amount of time delay,
and we develop a computationally efficient state estimator for
this scenario. We demonstrate that beyond a certain step size
threshold, the control law attempts to violate actuator slew-
rate limits, resulting in a severely deteriorated response. We
then show how this can be overcome by tracking an optimal
trajectory obtained by solving a constrained, finite horizon
Linear Quadratic Regulator problem and demonstrate the
feasibility of this approach experimentally.

I. INTRODUCTION

The traditional Atomic-Force-Microscope (AFM) imaging
method is to raster scan the sample with an atomically sharp
probe located at the end of a cantilever. Interaction with the
sample surface causes the cantilever to deflect. By recording
this vertical deflection, the sample surface topology can be
reconstructed. Although this method yields excellent spatial
resolution, its temporal resolution is poor by comparison and
has been the subject of intensive research. See [1] for a brief
history.

These research efforts can roughly be divided into two
camps. Some efforts to increase imaging speed have focused
on increasing the raster scan rate via advanced control
algorithms [2], [3], [4], [5]. The achievable speed of these
methods is limited by the bandwidth of both the piezo stage
and the power amplifier, which has led other researchers to
build custom hardware with extremely high-bandwidths [6],
[7]. Excellent results have been achieved by combining both
approaches [8].

Other researchers have begun to investigate using alterna-
tive scan patterns. Noting that the high frequency content of
the raster pattern contributes to the difficulty in following
it at high speeds, the researchers in [9] used a smooth
Lissajous pattern which has a lower frequency content to
avoid exciting the stage resonances. Others have developed
scanning patterns to minimize the time spent over uninterest-
ing regions [10]. An advantage of these ideas is that they can
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be implemented independent of custom hardware fabrication.
In a similar vein, [11] suggested a method of AFM imaging
whereby a random selection of point-to-point measurements
are taken. The sample topology is then reconstructed using
the theory of compressed sensing [12]. Taking this random
selection of point-to-point measurements reduces the tip-
sample interaction and can improve the integrity of both the
sample and AFM tip.

Minimizing the imaging time in this scheme requires that
the rest-to-rest maneuver times between point measurements
be minimized. While the goal of control laws designed for
raster scanning is to accurately track a triangle wave, the goal
in compressed sensing is to track a step input with minimum
settling time. This problem has been successfully addressed
for many second-order and some third-order systems by
the Proximate Time-Optimal Servomechanism, which is a
robust approximation of a time-optimal controller [13], [14],
[15]. Unfortunately, the development of these control laws
relies on geometric phase-plane arguments, making them
intractable for high-order systems.

Since most AFM control studies focus on accurately
tracking a raster pattern [16], [17], [2], it is unclear how
well these same controllers can be applied to step inputs.
Indeed, as we argue in Section II-A, good performance is
not guaranteed. Moreover, much of the current literature does
not consider saturation or slew-rate constraints. In particular,
the slew-rate constraint imposes a very real limitation and
is not hard to violate in a setpoint tracking application.
We demonstrate this in Section III-C and show that such
a violation yields a severely deteriorated system response.

The key contribution of this paper is to experimentally
demonstrate the feasibility of the following approach:

1) Design a state feedback gain, K, which would give the
desired response if no constraints were present.

2) Find matrices (Q,R) which yield (approximately) K
when used to solve the infinite horizon LQR problem.

3) Using the obtained (Q,R), solve a finite horizon,
constrained LQR problem.

4) Track the resulting trajectory with linear feedback.
In a compressed sensing scheme, we know the collection of
setpoints to visit in advance and hence the optimal trajectory
for each setpoint can be computed offline.

This paper is organized as follows. In Section II, we de-
scribe the experimental setup and the modeling of the system.
In Section II-A, we show that a controller which achieved
excellent performance tracking a raster pattern fails to pro-
vide good settling time to a step input. Moving beyond this,
we develop a linear state feedback controller in Section III.



D
e
sk

to
p

cR
IO

 F
P

G
A

(C
o
n

tr
o
l 

L
a
w

)

C
3
0
0

data

logging

NPXY100A

Fig. 1: Schematic diagram of the experimental setup.

The system model developed in Section II includes 9 samples
of delay and in Section III-A we show a way to reduce the
computational burden of the state estimator given these extra
states. Section III-C demonstrates how the linear feedback
approach can fail because it cannot account for the system
constraints. To address this, we consider the constrained,
finite-horizon LQR problem in Section IV. We review how
to cast the problem as a quadratic program, which we solve
offline to produce a desired trajectory. We show that tracking
this trajectory yields excellent performance in Section V and
provide concluding remarks in Section VI.

II. EXPERIMENTAL SETUP

The experimental setup is shown schematically in Fig. 1.
The X-Y piezo scanner is an nPoint NPXY100A which has
a range of 100 µm. For control, we employ a National
Instruments Compact Rio 9082. This hardware includes an
FPGA into which all control logic is programmed and also
includes the capacity for data logging and interfacing with
a development desktop computer. Signals to and from the
Compact Rio run through an nPoint C300 signal conditioner
and controller. We use the C300 in open-loop mode to
provide power amplification to the piezo scanner. The inputs
to the C300 saturate at ±10 V and is current limited to
100 mA. Even though the C300 is operated in open-loop
mode, the signal always runs through a DSP in the C300,
introducing around 360 µs of delay. Throughout this paper,
we use a sampling frequency of 25 kHz.

A. A Motivating Example

The frequency response of the NPXY100A in the x-
direction is shown in Fig. 2 (discussed further in the next
section). Prior control designs, which were intended to
track a raster pattern, were derived from lower-order models
which ignored certain low-frequency dynamics as well as the
resonances at approximately 350 Hz and 1000 Hz [2], [18].

Shown in Fig. 3 is the step response of the system (red
curve) using the H∞ controller designed in [18]:

D(z) = 0.74736
(z + 1)(z2 − 1.816z + 0.8284)

(z + 0.7072)(z − 0.7899)(z − 1)
(1)

× (z2 − 1.959z + 0.9864)

(z2 − 1.882z + 0.9019)
.

Also shown is the step response in simulation (dashed-black
curve), where the plant is the model given in [2]. Although
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Fig. 2: Frequency response of the hardware system (solid
black) and of the state-space model (solid green). Each of the
poles and zeros (excluding the poles associated with delay)
of the state-space model are marked as shown in the legend.
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Fig. 3: Step input with the system in closed loop, using the
H∞ controller in (1).

the response has a good rise time, the experimental response
is severely affected by undamped resonances. It is notable
that the controller in (1), combined with feedforward model
inverse methods, was able to achieve excellent raster tracking
performance [18] and we emphasize that (1) was designed
for this individual stage. Although adding such feedforward
control here would likely reduce the overshoot seen in the
simulation response, it would not eliminate the residual
vibrations seen in the experimental response in Fig. 3, since
the modes responsible for those vibrations are un-modeled.
In this work therefore, we attempt to fit, and hence control,
every feature until the system has rolled-off sufficiently.

B. System Modeling

To obtain a parametric model for control purposes, we first
obtain the frequency response function (FRF) of the system
using the method of swept sines. That is, at frequencies
between 10 Hz and Nyquist, we perturb the system with a
sine wave. After a settling period, we record both the input
and output. Numerically integrating each signal in the Fourier
Integral yields the first Fourier coefficients for both the input
and output. The ratio of these coefficients yields the FRF.



Prior work with this particular X-Y stage fit a low-order
order model using a weighted least squares parameter fitting
technique [2], [18]. Successfully using the weighted least
squares parameter fit depends on both correctly choosing
the model-order as well as the weighting matrix used. As
model order increases this method, in our experience, be-
comes unwieldy and suffers from a lack of repeatability. For
example, changing the model order often means adjusting
the weighting matrix. As an alternative, we employ an
eigenspace realization algorithm (ERA) [19], [20].

From previous modeling efforts as well as communication
with nPoint Inc., we know that at a sample frequency of
25 kHz, the C300 introduces nd = 9 units of delay. This
amount of delay is first removed from the experimental
frequency response. The ERA requires an impulse response
which we obtain via an inverse Fourier transform on the
FRF data. Applying the ERA outlined in [19] and truncating
the model order at ns = 12 yields a state-space realization1

G1 = {A, B, C, 0} with the magnitude fit shown in
Fig. 2. We then add the 9 units of delay into the model,
yielding the phase fit of Fig. 2. To do this, denote by x(k)
the states associated with G1 and by xd the states associated
with delay. Then, modeling all delay as input delay yields
the complete dynamics as

ξ(k + 1) = Φξ(k) + Γu(k) (2)
y(k) = Hξ(k) (3)

where

ξ(k) =

[
x(k)
xd(k)

]
, Φ =

[
A Ψ
0 S

]
, (4)

Ψ =
[
B 0

]
, H =

[
C 0

]
, Γ =

[
0
end
nd

]
, (5)

S =


0 1 0 . . . 0
0 0 1 0

...
. . . 0

0 0 0 . . . 1
0 0 0 . . . 0

 (6)

where ekm ∈ Rm is the kth unit vector, 0 is the appropriately
sized zero matrix and S ∈ Rnd×nd is the left-shift matrix.
Thus, the total model order is n = ns + nd = 21. We will
refer to this system as

G2 = {Φ,Γ, H, 0}. (7)

III. LINEAR STATE FEEDBACK CONTROL

We consider the general case of tracking a trajectory,
(ξref (k), yref (k), uref (k)) where ξref (k) is the desired
reference trajectory, uref (k) is the associated open-loop
control, and yref (k) = Hξref (k). In the simplest case,
(ξref (k), yref (k), uref (k)) are all constants such that yref
is a desired setpoint, ξref is the associated steady-state state,
and uref is the associated feedforward steady-state control.

1Due to the size of these matrices, we do not include them here. The
interested reader may contact the author at roger.braker@colorado.edu to
obtain this or other data used in this paper.

To achieve zero steady-state error to a step input, we augment
the system with integral action. These augmented dynamics
can be written as[

ξi(k + 1)
ξ(k + 1)

]
= Φaug

[
ξi(k)
ξ(k)

]
+ Γaugu(k)−

[
1
0

]
yref (k)

(8)

u(k) = −Kaug

[
ξi(k)

ξ̂(k)− ξref (k)

]
+ uref (k) (9)

y(k) = Haug

[
ξi(k)
ξ(k)

]
(10)

where

Φaug =

[
1 H
0 Φ

]
, Γaug =

[
0
Γ

]
(11)

Haug =
[
0 H

]
, Kaug =

[
ki K

]
, (12)

and ξ̂(k) is the estimate of ξ(k) which is explained next.

A. Efficient State Estimation for Systems with Large Delay

The inclusion of the 9 units of delay significantly increases
the dimension of the state space and the total units of delay
will increase if we increase the sample frequency. This has
the potential to make the computational cost of the state
estimator quite high, either in terms of FPGA fabric or time
or both. With an eye toward future expansion of the control
architecture, we seek a method to minimize this cost. If we
denote by ξ̂ the estimate of ξ, then typically, the estimator
update would be given by

ξ̂(k + 1) = (Φ− LH)ξ̂(k) + Γu(k) + Ly(k), (13)

where L ∈ Rn is the estimator gain. The bulk of the
computation cost lies in the the matrix-vector multiplication
of (Φ−LH)ξ̂(k). Since Φ is block upper triangular, its poles
are the union of the poles of A and S. If we agree that L
should only move the poles of A but leave the poles of S (i.e.,
those associated with delay) unchanged, the computational
cost can be significantly reduced. Partition the state ξ̂ and
estimator gain L as

L =
[
LT

1 LT
2

]T
(14)

ξ̂(k) =
[
x̂T (k) x̂Td (k)

]T
(15)

L1, x̂(k) ∈ Rns , L2, x̂d(k) ∈ Rnd . (16)

By letting L2 = 0, then

Φ− LH =

[
A− L1C Ψ
−L2C S

]
(17)

=

[
A− L1C Ψ

0 S

]
. (18)

Thus, when L2 = 0, the poles of Φ− LH are the union of
the poles of A−L1C and the poles of S, as desired. We can
thus exploit the structure of (18) by expressing the estimator
update equation as

x̂(k + 1) = (A− L1C)x̂(k) + Ψx̂d(k) + L1y(k) (19)
x̂d(k + 1) = Sx̂d(k) + end

nd
u(k). (20)



The only job of the matrix S is to shift x̂d(k) to the left. This
can be efficiently accomplished in the FPGA via a register
type structure, obviating the need for another matrix-vector
multiplication. Additionally, we can reduce the matrix-vector
multiplication of Ψx̂d(k) to the vector-scalar multiplication
Bu(k − nd).
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Fig. 4: Pole-zero plot of the open-loop system (blue) and the
closed-loop poles (red).

B. Controller Design
In designing the linear control law, we maintain two

systems

G1 = {A,B,C, 0} (21)
G3 = {Φaug,Γaug, Haug, 0} (22)

where G3 is used to design the feedback gain Kaug , and
G1 is used to design the estimator gain L1. We design the
observer gain as the solution to the steady-state LQR problem
for the dual of G1 for weighting matrices Q = 55.5CTC and
R = 1. In designing the feedback gain Kaug , we employ a
pole-placement algorithm. All complex poles are assigned
to have a damping of ζ = 0.7. The natural frequency of the
slowest two is increased by a factor of 1.16. We move the
slowest real pole to cancel its neighboring zero and place
8 of the delay poles symmetrically about the origin with a
radius of r = 0.5, leaving one pole at z = 0. A pole-zero
plot of G3 as well as the eigenvalues of (Φaug − ΓaugKaug)
can be seen in Fig. 4.

C. The Trouble with Linear Feedback
Aside from the obvious magnitude constraints on the

input, the nPoint C300 is also current limited to 100 mA.
Effectively, this translates to a maximum slew-rate limit on
the input. Consider visiting the sequence of points

{y1
ref = 7.0 µm, y2

ref = −7.0 µm} (23)

with the stage beginning at rest.
Fig. 5 shows the NPXY100A response to following the

step input sequence (23) (red curve) under the linear feed-
back control law designed in Section III-B. There are 800

samples between each command. The response to the first
command y1

ref is well damped with good rise time. However,
in moving from y1

ref to y2
ref , the computed control changes

too rapidly and the slew-rate threshold is reached, resulting
in a severely deteriorated control action, as evidenced by the
oscillations induced in the second part of Fig. 5. This same
type of behavior will also be seen if, e.g., the magnitude
of y1

ref were increased beyond about 7.5 µm, as shown in
Fig. 5 by the black-dotted trajectory. Indeed, in other trials
not shown here, the difference between these two types of
trajectories essentially bifurcates once a certain step size
threshold is crossed (for a given gain Kaug).

IV. CONSTRAINED LQR
The main failure of designing a linear feedback law to

track a step change in reference is its failure to account for
both actuator saturation and input slew-rate limits. One way
to deal with these constraints is to solve a finite horizon
constrained LQR problem and track the resulting trajectory
with linear feedback. If our model of the system is close to
reality, the error between trajectories will be small, meaning
that the perturbation from the designed input (which satisfies
the constraints) will also be small.

To solve the finite horizon constrained LQR problem, we
work in the error coordinates of G1. Given a desired setpoint,
yref , let uss be the associated steady-state control input and
xss = (I − A)−1Buss be the associated steady-state state
vector. Define the error coordinates as xe = x − xss with
control ū(k) given by

ū(k) = (u(k)− uss) ∈ [ū−, ū+] (24)

ū− = −umax − uss (25)

ū+ = umax − uss. (26)

Also, define the input slew rate as

∆u(k) := u(k)− u(k − 1) = ∆ū(k). (27)

Now we seek a solution to

min
u

N−1∑
k=0

xe(k)TQxe(k) + ū(k)TRū(k) (28a)

+ xe(N)TQpxe(N)

s.t. xe(k + 1) = Axe(k) +Bū(k) (28b)
xe(0) = x(0)− xss (28c)

ū− ≤ ū(k) ≤ ū+, k = 0 . . . N − 1 (28d)
|∆ū(k)| ≤ (∆u)max, k = 1 . . . N − 1 (28e)

where (∆u)max is the slew-rate limit, Qp = QT
p ≥ 0

is the solution of the discrete algebraic Ricatti equa-
tion, Q = QT ≥ 0, and R > 0. By writing xe(k) for
k = 1 . . . N , in terms of xe(0) and the decision variables
ū(k), the equality constraints (28b) and (28c) can be elimi-
nated and (28a) can be condensed into a quadratic program
[21]

min
Ū

1

2
ŪTHŪ + (Mxe(0))T Ū (29)

s.t. FŪ ≤ b (30)
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Fig. 5: Response of the NPXY100A to a sequence of step commands under the linear feedback law designed in Section III-
B. The first step in the sequence, from 0 → y1

ref = 7.0 µm shows good performance. The effect of canceling the real
pole-zero pair manifests as the control signal decaying after the output has settled. However, in the second part, in the move
y1
ref → y2

ref , the control law requests a faster change in input than the C300 can provide and the slew-rate limit is reached.
The result is a severely deteriorated system response. The black-dotted trajectory shows that this phenomenon will also
occur by simply increasing the first step size.

where Ū =
[
ū(0) ū(1) . . . ū(N − 1)

]T
is a stacked

column vector of decision variables. The inequality con-
straints (28d)-(28e) appear as the linear inequality (30). The
system dynamics as well as the penalty matrices Q and R
are folded into the matrix M and Hessian H.

Solving this problem offline using, for instance, Matlab’s
quadprog yields the optimal vector of stacked control in-
puts in the error coordinates, Ū∗. At time k, the optimal input
in the non-error coordinates is u∗(k) = (ek+1

N )T Ū∗ + uss,
which we compute along with the resulting optimal state
trajectory, ξ∗(k), and optimal output y∗(k) when the u∗(k)
are applied in open-loop to the system G2 (i.e., the system
with delay included). Together, this results in the triple
(Ξ,Y,U), where 2

Ξ = {ξ∗(k)}N−1
k=0 (31)

Y = {y∗(k)}N−1
k=0 (32)

U =
{

(ek+1
N )T Ū + uss

}N−1

k=0
. (33)

We adopt the notation that, e.g., Ξk is the kth element in the
sequence of optimal states, Ξ. We then track (Ξ,Y,U), i.e.,
at each sample instant, apply the feedforward control Uk and
track the desired output Yk and state trajectory Ξk. Thus, the
control input to the piezo stage is

u(k) = Uk −K(ξ̂(k)− Ξk)−Kiξi(k) (34)

= Uff,k −Kξ̂(k)−Kiξi(k) (35)

where
Uff = {Uk +KΞk}N−1

k=0 . (36)

2We emphasize for clarity that (31)-(33) are sequences, not stacked
vectors.

A. The Inverse LQR Problem

One key difficulty in applying the constrained LQR ap-
proach is the selection of weighting matrices, (Q,R). One
common method is to set R = 1 and let Q = γCTC for
some γ > 0. As γ becomes large, this approach essentially
incites pole-zero cancellation [22]. For our system, the poles
and zeros are not only imperfectly known, but are liable to
move depending where we are on the stage [2], [18]. Thus,
we do not consider this a viable approach.

Ultimately, we would like a trajectory that looks like the
first step command in Fig. 5 but which respects the saturation
and slew-rate limits for larger step sizes. In other words,
we would like to solve the constrained LQR problem using
(Q,R) matrices which, in the infinite horizon, unconstrained
case, would yield K. One way to do this is to try to solve
the inverse optimal control problem [23]. That is, solve for
decision variables Q = QT ≥ 0, R > 0, P = PT ≥ 0, and
P1 = PT

1 > 0, from

(A−BK)TP (A−BK)− P −KTRL+Q = 0 (37)

BTPA− (R+BTPB)K = 0 (38)

ATP1A− P1 ≤ Q. (39)

We solve this problem using YALMIP [24]. Note that this
problem does not always have a solution, since not all
possible eigenvalues are reachable via LQR. Thus, as with
most methods of choosing LQR weights, some iteration is
required.

B. Practical Considerations

Implementing the control law as (35) rather than (34)
offers a significant advantage in a real-time control loop.
Equation (34) implies that at each sample instant, the control
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Fig. 6: Block diagram of the trajectory tracking controller implementation.

loop needs to acquire 23 distinct pieces of data from the
FIFO buffer: the optimal input Uk, the optimal state trajectory
Ξk, and the optimal output Yk (or compute HΞk online). By
instead implementing (35), we only need to read two distinct
values from the FIFO buffer, since the sequence Uff from
(36) is a sequence of scalars which can be computed offline.

Now, consider the problem of visiting (for simplicity) a
collection of two points, {y1

ref , y
2
ref}. In the entire scheme

of compressed sensing, between visiting y1
ref and y2

ref , we
must lower the tip, take a measurement, and retract the tip.
Since this process will take a non-deterministic amount of
time, another important question is how to choose both the
horizon length, N , and the initial condition x2(0) to solve
(28a) for setpoint y2

ref . Although the tip is not lowered until
y(k) has settled, the issue is complicated by the fact we are
designing (Q,R) to cancel the low-frequency real pole-zero
pair. Thus, although we might declare the position y(k) to
have settled, there will be an internal state which has not yet
reached its steady-state value. However, once the position
has settled, we begin the tip-down-measure-tip-up process,
which is relatively time consuming. During this time, we
expect the remaining states to have settled. Thus, we use
x2(0) = x1

ss. We select the horizon length to be long
enough so that once k = N , the internal states are sufficiently
close to their steady-state values. Thus, for samples k > N ,
i.e., we have exhausted the data in the FIFO buffer, we use
uff (k) = uss +Kξss and yref (k) = yss.

V. CONSTRAINED LQR RESULTS

In designing the gains for the Constrained LQR trajectory
tracking scheme, we use the same observer design as before.
In addition, we design two separate control gains, Ktrk

and Klqr. The gain Klqr is chosen to generate the (Q,R)
matrices and was chosen so that the closed-loop eigenvalues
of (A− BKlqr) are as shown in Fig. 7. As in the standard
linear feedback case, it is designed such that the low-
frequency real pole-zero pair cancel. The gain Ktrk is chosen
and implemented to track the optimal trajectory.

We consider visiting the same sequence of setpoints as in
(23). We solved the constrained LQR problem (28a) for each
move (i.e., 0 → y1

ref and y1
ref → y2

ref ) using a horizon of
N = 400 samples but track each setpoint for 800 samples
using the strategy outlined at the end of Section IV-B. This

results in two trajectories which we label as

(Ξ1,Y1,U1) (40)

(Ξ2,Y2,U2). (41)

The results of tracking the optimal trajectory are shown in
Fig. 8, which shows a drastic improvement over the results of
the standard linear feedback controller in Fig 5. The settling
times of all experiments are collected in Table I. Although
the linear controller yields a better settle time in simulation,
the constrained LQR trajectory tracking controller performs
significantly better in real application because actuator con-
straints are not violated.
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Lin Fdbk Constrained LQR
0 → y1ref y1ref → y2ref 0 → y1ref y1ref → y2ref

sim. 0.00564 0.00592 0.00492 0.0074
exp. 0.00724 0.025 0.00684 0.0126

TABLE I: Settling times for the linear feedback controller
and constrained LQR trajectory tracking controller for the
sequence of setpoints (23). We use a 1% settling-time
criterion and all times are in seconds.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have argued that a high-fidelity model
of a piezo X-Y stage is critical to obtain good setpoint
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tracking performance. Moreover, we demonstrated that actu-
ator constraints, and in particular slew-rate constraints, pose
a significant challenge when applying linear feedback to
track a step input in a highly resonant piezo stage. We then
showed that this can be overcome by tracking a sequence
of optimal trajectories obtained by solving a finite horizon,
constrained LQR problem. We also addressed many of the
related practical concerns and showed that our approach can
yield good experimental performance.

Future work will investigate whether the small overshoot
seen in Fig. 5 and Fig. 8 can be explained with a better linear
model or if it is due to hysteresis and drift. We will also
compare the trajectory tracking method presented here to a
model predictive control approach, where the optimization is
solved online but over a much shorter horizon.
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