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Abstract— Random sub-sampling imaging methods in Atomic
Force Microscopy require the piezo X-Y stage to track a
sequence of step inputs. Control slew-rate limits combined with
linear feedback methods have been shown to limit achievable
performance in this scenario. Due to its natural ability to
account for actuation constraints, we consider the application
of Model Predictive Control. By recasting the problem in an
incremental form, the arising quadratic program takes a form
that can be solved efficiently. Specifically, we solve an input
constrained Model Predictive Control problem with 50 states, a
control horizon of 12 samples, and a sample frequency of 25 kHz
using the Fast Gradient Method. We compare simulation and
experimental results using this method.

I. INTRODUCTION

The traditional Atomic-Force-Microscope (AFM) imaging
method is to raster scan the specimen with an atomically
sharp probe. Since the performance of an AFM depends
on the overall closed-loop dynamics, efforts to increase
imaging speed have focused both on increasing the raster
scan rate via advanced control algorithms [1], [2], [3] and
on increasing the mechanical bandwidth through improved
mechanism design [4], [5].

Nonetheless, raster scanning is still not only a very time
consuming process, but can also lead to damaging either
the specimen or the AFM probe tip or both. This has led
researchers to consider alternatives to the traditional raster
scan. Specifically, there is recent motivation and interest in
sub-sampling (acquiring, e.g., approximately 10-30% of the
pixels) using, e.g., a subset of the scan lines [6], or other
alternative scan patterns [7], [8]. Another approach is to
randomly sample the specimen [9], [10] and reconstruct the
topology of the specimen via compressed sensing (CS) [11].
Sub-sampling reduces the tip-specimen interaction and can
improve the integrity of both the specimen and AFM tip.
In general, the best reconstruction for a given sub-sampling
percentage occurs when using a random sampling of the
pixels. When sub-sampling in this point-to-point manner,
minimizing the imaging time requires that the rest-to-rest
maneuver times between point measurements be minimized.

Thus, while the goal of control laws designed for raster
scanning is to accurately track a triangle wave, the control
goal in the random sub-sampling approach is to track a
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sequence of step inputs with minimum settling times. While
the minimum-time regulation problem has been successfully
addressed for a variety of lower order systems [12], [13],
[14], these techniques become intractable to generalize to
the higher order models needed for many AFM stages.

Moreover, AFM controllers which yield excellent results
in raster scanning applications do not necessarily give ad-
equate performance when tracking step commands, as we
showed in [15]. We also showed in that paper that control
input constraints, and in particular slew-rate constraints,
present a significant limitation on achievable performance
when standard linear feedback laws are used and most of
the existing AFM control methods do not explicitly account
for such constraints.

Model Predictive Control (MPC) is a method with a
natural ability to handle general input and state constraints
[16]. In linear MPC, a constrained, finite-horizon Linear
Quadratic optimal control problem is solved at each sample
instant. The solution of this problem results in a sequence of
optimal control inputs. The first element of the sequence is
applied to the actual system, the rest are discarded and the
process repeats at the next sample instant. Our interest in
MPC lies in the ability to naturally incorporate control input
constraints in the optimization.

In linear MPC problems, the optimization can be recast as
a Quadratic Program (QP) and there has been significant re-
search into developing algorithms specifically tailored to the
QPs arising in MPC. These include active set methods [17],
interior point methods [18], and gradient methods [19], [20].
For MPC problems with only input constraints and which are
implemented in a Field Programmable Gate Array (FPGA),
the Fast Gradient Method (FGM) formulation described in
[21] is particularly attractive and is the algorithm we use in
this paper.

MPC has been applied before to AFMs but with only a
1 kHz sample rate [22], which is considerably slower than
typical AFM sample rates. In [23], the authors use MPC to
suppress vibration in an active structure, achieving a 25 kHz
sampling rate with a control horizon of 4 samples. In [24],
the authors apply MPC to a piezo-actuator with a 10 kHz
sample rate. We note that in their work, the absence of a
mechanical stage leads to a considerably simpler set of plant
dynamics (second-order model) than what we consider here.

In this paper, we develop and apply an input constrained
MPC control formulation that satisfies actuator slew-rate
constraints and is implemented at 25 kHz. We discuss some
numerical conditioning issues and how this relates to tuning
the controller. The main contributions of this paper are (1)



to show that MPC can be an effective control method for
piezo nano-positioning stages tracking setpoints using stan-
dard AFM sample rates, (2) to demonstrate an application
of the FGM on a real system with 50 states, a control
horizon of 12 samples, and a sample frequency of 25 kHz,
and (3) to explore numerical conditioning issues and their
implications for performance. In Section II, we outline our
experimental setup as well as develop a system model. In
Section III, we derive the particular formulation of MPC
that we have adopted. In Section IV, we give details about
our implementation of the FGM QP solver, and we outline
our method for tuning the MPC controller in Section V.
Section VI compares simulation results with experiment, and
we provide concluding remarks in Section VII.

II. EXPERIMENTAL SETUP AND SYSTEM MODELING

The experimental setup in our lab centers around an nPoint
NPXY100A piezo x-y stage with a range of 100 µm in both
directions. The stage is driven by an nPoint C300 signal
conditioner. The C300 has the ability to run in open-loop
mode as well as provide basic PID control, though the PID
functionality is always turned off for the work described
in this paper. Unfortunately, whether in Open-Loop or PID
mode, signals into and out of the C300 always run through
an internal DSP, which introduces about 400 µs of total delay
from input to output. Inputs to the C300 saturate at ±10v
and the actual output to the NPXY100A is current limited
to 100 mA.

All control algorithms discussed in this paper use a
sample frequency of 25 kHz and are programmed into a
National Instruments Compact Rio 9082. The main features
of this hardware are a Xilinx Spartan LX150 FPGA and 16-
bit Analog-to-Digital (ADC) and Digital-to-Analog (DAC)
modules.

It is common in the AFM literature to consider the x and
y axes as decoupled, single-input-single-output (SISO) sys-
tems, and that is the point of view we adopt here. However,
rather than implementing two separate control loops for the
two axes, we implement a single MIMO control loop where
the model has a block diagonal structure. We emphasize this
fact because it means that in future work, compensation of
the cross axis coupling is essentially reduced to a modeling
and control tuning problem–the structure for MIMO control
is already in place.

To obtain a parametric model of the NPXY100A stage
for control purposes, we first obtain the frequency response
function (FRF). We generate the FRF for both axes using
the method of swept sines. That is, at frequencies between
10 Hz and Nyquist, we perturb the system with a sine wave.
After a settling period, we record both the input and output.
Numerically integrating each signal in the Fourier Integral
yields the first Fourier coefficients for both the input and
output. Taking the ratio of these coefficients yields the FRF.
More details on this method can be found in the appendix of
[25], which our implementation follows closely. The black
curves in Figs. 1a and 1b are the resulting FRFs for the x
and y axes, respectively.
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Fig. 1: Frequency response of NPXY100A stage: (a) x-
direction and (b) y-direction. In both figures, the physical
system is represented by the solid black curve and the state-
space model is dashed green. Each of the poles and zeros
(excluding the poles associated with delay) of the state-space
model are marked as shown in the legend.

From previous modeling efforts as well as communication
with nPoint Inc., we know that at a sample frequency of
25 kHz, the C300 introduces nd = 10 units of delay. This
amount of delay is first removed from the experimental
frequency responses. To obtain a parametric model, we
employ an eigenspace realization algorithm (ERA) [26], [27].
The impulse responses required by the ERA are obtained via
an inverse Fourier transform on the FRF data. We then apply
the ERA outlined in [26] to the impulse data for the x and y
directions, independently. This yields two SISO state-space



systems

Gx = {Ax, Bx, Cx, 0}
Gy = {Ay, By, Cy, 0}.

We truncate the model order for Gx at nx = 12 and for
Gy at ny = 16. The resulting magnitude fits are shown in
Fig. 1. We then add the 10 units of delay into the model,
which recovers the phase fits shown in Fig. 1. Modeling all
delay as input delay and combining the two systems as a
decoupled MIMO system, the dynamics for both axes are
given by

ξ(k + 1) = Aξ(k) +Bu(k) (1)
ν(k) = Cξ(k)

where

A =


[
Ax Ψx

0 S

]
0

0

[
Ay Ψy

0 S

]
 , B =


0nx

end
nd

0

0ny0
end
nd


Ψx =

[
Bx 0

]
,Ψy =

[
By 0

]
,

C =

[
Cx 0Tnd

0
0 Cy 0Tnd

]

S =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0

...
. . .

0 0 0 0 . . . 1
0 0 0 0 . . . 0


where ekm ∈ Rm is the kth unit vector. When it is easily
inferred, 0 is the appropriately sized zero-vector (matrix),
otherwise its size is indicated by 0m (0m×k). Note that
S ∈ Rnd×nd is the left-shift matrix and serves to delay the
input into Ax and Ay by 10 samples. The total model order
is ns = nx + nd + ny + nd = 48 and the system has nu = 2
inputs and no = 2 outputs. We refer to this system as

Gp = {A,B,C, 0}. (2)

III. MODEL PREDICTIVE CONTROL

In previous work, we saw that in trying to develop a high-
bandwidth linear feedback law for tracking step inputs for
our piezo stage, the slew-rate constraint presented by the
current limit of the power amplifier is of primary importance
[15]. In this paper, we develop an MPC formulation that
only accounts for the slew-rate constraint. This allows us to
formulate the problem in a way such that an efficient QP
solver can be utilized, and allows us to achieve a 25 kHz
sample rate.

To develop the MPC formulation, we convert
the system Gp in (2) into an incremental form on
∆u(k) := u(k)− u(k − 1), by augmenting Gp with nu
extra states ξu(k) ∈ Rnu such that

ξu(k) = u(k − 1).

It follows that

ξ̃(k + 1) =

[
A B
0 I

]
ξ̃(k) +

[
B
I

]
∆u(k) (3a)

ν(k) =
[
C 0

]
ξ̃(k) (3b)

ξ̃(k) :=

[
ξ(k)
ξu(k)

]
(3c)

ξ̃(0) =

[
ξ(0)
u(−1)

]
. (3d)

We call this system G̃ = {Ã, B̃, C̃, 0}, which has ñs = 50
states. To solve the setpoint tracking problem, we work in
the error coordinates of G̃. For an arbitrary reference νr,
in steady state we have ∆uss = 0 and ξ̃ss = Nξνr where
Nξ ∈ Rñs×nu is found by solving[

Nξ
Nu

]
=

[
I − Ã −B̃
C̃ 0

]−1 [
0
I

]
, (4)

which will give Nu ≡ 0. The error state, ξ̃e(k) = ξ̃(k)− ξ̃ss
has dynamics

ξ̃e(k + 1) = Ãξ̃(k) + B̃∆u(k)− ξ̃ss
= Ãξ̃e(k) + B̃∆u(k).

Given the current state ξ̃e(k), the MPC control law sets
∆u(k) = µ(0) where µ(0) is obtained by solving the finite
horizon linear-quadratic optimal control problem

V ∗(ξ̃e(k)) = min
µ(i)

N−1∑
i=0

z(i)T Q̃z(i) + µ(i)T R̃µ(i) (5a)

+ z(N)T Q̃pz(N)

s.t. z(i+ 1) = Ãz(i) + B̃µ(i) (5b)

z(0) = ξ̃e(k) (5c)
||µ(i)||∞ ≤ (∆u)max (5d)

where N is the horizon length, Q̃p = Q̃Tp ≥ 0 is the solution
of the discrete algebraic Ricatti equation, Q̃ = Q̃T ≥ 0, and
R̃ = R̃T > 0.

By defining a vector of stacked decision variables,
∆UT =

[
µT (0) µT (1) . . . µT (N − 1)

]
, and writing the

states in terms of the decision variables and current state
ξ̃e(k), the equality constraint (5b) can be eliminated and the
minimization problem (5) can be condensed into a quadratic
program [16]

V ∗(ξ̃e(k)) = min
∆U

1

2
∆UTH∆U + (Φξ̃e(k))T∆U (6a)

s.t.
[
I
−I

]
∆U ≤ 1∆umax (6b)

where 1 ∈ R2Nnu is a vector of ones. The inequality
constraints (5d) appear as the linear inequality (6b). The
system dynamics matrices as well as the penalty matrices
Q̃, Q̃p, and R̃ are folded into the matrix Φ ∈ RNnu×ñs and
Hessian H ∈ RNnu×Nnu . Solving the quadratic program
(6) comprises the core computational difficulty in applying
the MPC control law. We discuss our hardware implementa-
tion of a QP solver able to handle (6) in Section IV-A.



Finally, note that if (6) is unconstrained, then it has a
closed-form solution, ∆U = −H−1Φξ̃eo. Taking only the
first nu = 2 elements of ∆U , we arrive at the linear feedback
law

∆u(k) = −Kξ̃eo (7)

K =
[
Inu 0 . . . 0

]
(H−1Φ).

In Section VI, we will compare the system performance
using the constrained MPC of (6) to the unconstrained
solution (7).

A. Zero-offset Tracking

To achieve zero-offset tracking of a step input and to
mitigate the effects of plant-model mismatch, we employ
disturbance estimation [28], [29], [30]. Using a constant
output disturbance model, we augment the original system
Gp in (2) with a disturbance state, ξ̂o(k) ∈ Rno such that
the estimator dynamics are[

ξ̂(k + 1)

ξ̂o(k + 1)

]
=

[
A 0
0 I

] [
ξ̂(k)

ξ̂o(k)

]
+

[
B
0

]
u(k)

+ Lo (ν(k)− ν̂(k))

ν̂(k) =
[
C I

] [ ξ̂(k)

ξ̂o(k)

]
where Lo is the estimator gain designed such that the esti-
mator system, which we refer to as Go = {Ao, Bo, Co, 0},
is stable. The additional disturbance state ξ̂o is not used in
the control itself. Rather, it is used to modify the setpoint so
that the setpoint driving the MPC control law is given by

νe = νr − ξ̂o(k).

Then the MPC with disturbance estimation control law is

ξ̃e(k) =

[
ξ̂(k)
ξu(k)

]
−Nξνe

∆u(k) =
[
Inu 0 . . . 0

]
arg min

∆U
V ∗(ξ̃e(k))

u(k) = ∆u(k) + ξu(k).

which is illustrated in the block diagram in Fig. 2.

IV. MPC IMPLEMENT-ABILITY ANALYSIS

A. The FGM algorithm

One of the challenges in applying MPC to systems with
fast sample rates is solving the QP in (6) within the sample
period. In our case, this means the QP must be solved faster
than 40 µs, to allow for the computation of the state estimate
etc. as well. In this paper, we use a formulation of the
FGM which has been optimized to take advantage of the
parallelism inherent in FPGAs [21]. Although the FGM can
solve the QP very efficiently, it is limited to problems where
the constraint set K is simple, such as a box constraint.
Working with the incremental form in (3) has allowed us
to cast the slew-rate constraint ||∆u(k)||∞ ≤ (∆u)max as
such a box constraint.

Our hardware implementation of the FGM differs some-
what from the one described in [21]. To highlight those

differences, we repeat their algorithm here. This particular
form of the FGM uses a fixed step size β and is given in
Algorithm 1:

Algorithm 1 Fast Gradient Method

Require: Initial iterates v0 = ∆U0 ∈ K; upper (lower)
bound L (α > 0) on maximum (minimum) eigenvalues
of H; step size β = (

√
L−
√
α)/(
√
L+
√
α).

1: f = (1/L)Φξ̃e(k)
2: for j = 0 . . . Jmax − 1 do
3: tj = (I −H/L)vj − f
4: ∆Uj+1 = πK(tj)
5: vj+1 = (1 + β)∆Uj+1 − β∆Uj
6: end for

Note that K is the set of feasible control inputs, i.e.,
(6b) and Line 4 is a projection of the iterate onto this
set. In our case with box constraints, this is a simple,
parallelize-able saturation of each element of the iterate.
The matrices I − H/L and Φ as well as the constants
β and 1 + β are all computed offline. The bulk of the
computational burden of the algorithm is in the matrix-vector
multiplications f = Φξ̃e(k) and (I −H/L)vj .

In [21], they describe a matrix-vector multiplication hard-
ware implementation which computes dot products sequen-
tially (e.g., one at a time) but where each scalar multipli-
cation in a single dot product is done in parallel and the
results are summed in an adder reduction tree. This method
is problematic for our implementation, since there need to be
as many multiply blocks as there are columns in the wider
of H or Φ. In our case, Φ has 50 columns. Our later analysis
indicates that between 22 and 32 bits are needed, so that each
multiply block requires four DSP slices. Yet, our FPGA only
has 180 DSP slices. We therefore modify the implementation
so that each dot product is computed in parallel, but with no
parallelism in the individual dot products. Each dot product
is implemented as a sequential Multiply Accumulate (MAC)
operation. Thus, taking N = 12 as we do in Section V, we
only need 4Nnu = 96 DSP slices. Our implementation is
illustrated in Fig. 3.

By multiplexing the inputs to each MAC and controlling
how many clock cycles each MAC operation runs, we can
compute dot products for arbitrarily sized vectors. This
allows us to use the same hardware resources to compute
f in line 1, all of line 3, and line 5. More specifically, we
compute line 3 as a single matrix-vector multiplication

tj =
[
I −H/L f

] [ vj
−1

]
.

Similarly, we compute line 5 also as a matrix-vector multi-
plication

vj+1 =
[
∆Uj+1 ∆Uj

] [1 + β
−β

]
.

V. MPC TUNING

The convergence rate of the FGM depends on both the
condition number κ of the Hessian H and the horizon
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Fig. 2: Block diagram of the implementation of the MPC control
law with disturbance estimation. Thin signal lines are vectors in
R2, while thick signal lines are vectors in R48 (for ξ̂(k)) or R50

(for ξ̃e(k)).
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Fig. 3: Matrix multiplication architecture for a gen-
eral matrix-vector multiplication Px = b, where
P ∈ Rm×n. Each MAC block computes a single
dot product. In our implementation, there are 24
MACs (m = 24) and n varies between 2 and 50.

length N [21]. In turn, κ depends on the horizon length,
N , the model, and the selection of (Q̃, R̃). Furthermore, the
achievable precision is influenced by the wordsize used in
the implementation as well as κ. Effectively, this means that
tuning the MPC controller is intimately tied to its implement-
ability. Indeed, [19] notes that an aggressively designed Q̃
(relative to R̃) or a large horizon N can lead to poor numeric
conditioning in condensed MPC formulations.

In this section, we outline a basic design strategy that
attempts to get the best performance from these constraints.
Our overall goal is to minimize the settling time to a step
command while also making κ as small as possible. The
strategy can summarized as a three-step process:

1) Select an initial weighting matrix Q̃.
2) Iterate over R̃ and N to determine the best trade-off

between condition number and settling time.
3) Run fixed-point simulations to guide wordsize selec-

tion.
We now expound on each point.

(1) Initial Q̃ selection: One common method to choose
Q̃ and R̃ is to set R̃ = 1 and let Q̃ = γC̃T C̃ for some
γ > 0. As γ becomes large, this approach essentially incites
pole-zero cancellation [31]. For our system, the poles and
zeros are very lightly damped, are imperfectly known, and
can move depending where we are on the stage [1], [25].
Thus, we do not consider this a viable approach.

Instead we first design feedback gains Kx and Ky which
damp the resonant modes, increase the natural frequency of
the most dominant modes, and cancel the low frequency real
pole-zero pair (recall Fig. 1). Using these gains Kx and Ky ,
we then constrain Ry = Rx = 1 and solve an inverse optimal
control problem [32]. That is, considering only the x-axis,
solve for the decision variables Qx = QTx ≥ 0, P = PT ≥ 0,
and P1 = PT1 > 0, from

0 =(Ax −BxKx)TP (Ax −BxKx)− P
−KT

x RxKx +Qx

0 =BTx PAx − (Rx +BTx PBx)Kx

Qx ≥ATxP1Ax − P1.

We solve this problem using YALMIP [33]. Note that this
problem does not always have a solution, since not all
possible eigenvalues are reachable via LQR. Thus, as with
most methods of choosing LQR weights, some iteration is
required. A solution is similarly obtained for the y direction.

For the complete MPC system, G̃, we let

Q̃ = diag(Qx, 0nd
, Qy, 0nd

, 0, 0). (8)

Note that the zero entries in this matrix are the states
associated with the input, which we do not wish to penalize
here. For a control horizon of N = 24 and R̃ = I , this results
in a condition number of H of nearly 4× 106. We observe
similar condition numbers if we use the same Qx and Qy
for a system without delay and without the augmented state
ξu such that Q = diag(Qx, Qy), i.e., the zeros in (8) are not
responsible for the poor conditioning.

(2) Iterate over R̃ and N : We then iterate over various
values of the control weight R̃ = γI , and horizon N to
explore the trade-off between stability, settling time, and
the condition number κ of H . To do this, we simulate the
complete, closed-loop system of Fig. 2 with floating-point
arithmetic. We solve the quadratic program with Matlab’s
quadprog, since at this point we are interested in the best
performance that can be expected from a given N and R̃,
laying aside the convergence of the FGM. These results are
compiled into Table I. From this table, we select N = 12,
and R̃ = 5000I . We note that, counter intuitively, increasing
R̃ decreases the settle time up to a certain threshold.

(3) Select a fixed-point wordsize: Note that each row
of Table I corresponds to a simulated, closed-loop trajectory.
For a single time k on these trajectories, we can compare the
effect of the wordsize used to represent the QP problem data
and the maximum number of iterations Jmax by considering
the norm of the error between the ∆U∗ (taken to be the
solution given by quadprog) and the solution ∆ÛJmax

given by the fast gradient method for both floating point data
and fixed point data using Jmax iterations. Several results of
this procedure are shown in Fig. 4, which also illustrates the
importance of considering the condition κ of the Hessian
H . At present, our hardware implementation can execute at
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Fig. 4: This figure illustrates the effect of the relative size of R̃ = γI and the condition number κ of H on the convergence
rate of the FGM. The x-axis in each plot is the maximum number of FGM iterations, while the y-axis is the norm of the
error between Matlab’s quadprog and the FGM solution for a floating point implementation (solid blue) and fixed-point
implementations with different word sizes, indicated by “nw” in the legend.

most Jmax = 20 iterations, though there is still significant
room for optimization here. For Jmax = 20, the results in
Fig. 4 show that little precision is gained by moving from
22 bits to 32 bits when γ = 5000 and N = 12. However,
in terms of the number of DSP slices used, there is no
difference in implementing operations between 19 and 32
bits. We have therefore chosen at this point to implement the
algorithm with 32 bits since this decreases the brittleness of
the implementation (e.g., when changing problem data).

settle time [ms]
N R11 R22 x-dir y-dir κ

12 1.0 1.0 – – 102943
12 100.0 100.0 – – 4314
12 1000.0 1000.0 4.68 – 1030
12 2500.0 2500.0 4.64 5.76 585
12 5000.0 5000.0 4.68 5.08 381
12 10000.0 10000.0 4.80 5.32 248

18 1.0 1.0 – – 1035201
18 100.0 100.0 4.76 – 25604
18 1000.0 1000.0 4.64 5.88 4344
18 2500.0 2500.0 4.64 5.76 2131
18 5000.0 5000.0 4.68 5.08 1238
18 10000.0 10000.0 4.80 5.32 717

24 1.0 1.0 4.84 – 3995883
24 100.0 100.0 4.76 – 64371
24 1000.0 1000.0 4.64 6.08 8213
24 2500.0 2500.0 4.64 5.80 3584
24 5000.0 5000.0 4.68 5.08 1909
24 10000.0 10000.0 4.80 5.32 1018

TABLE I: Settling times and condition numbers κ for differ-
ent choices of R̃ and N . We use a 1% settling-time criterion
and all times are in milliseconds. These results are obtained
using Matlab’s quadprog with full precision arithmetic.

A. State Scaling

Although the Xilinx LX150 FPGA is capable of perform-
ing floating-point math operations, fixed-point arithmetic
consumes fewer hardware resources and has lower latency.
Of course, one of the hurdles with fixed-point implemen-

tations is its limited dynamic range. During a unit step
command to the state-space representation Gp, the state with
the largest absolute value is on the order of 65000 while the
smallest is on the order of 1. We therefore scale the system
states so that the magnitude of every state is comparable by
applying a state transformation z = T ξ̃, where we take T as
a diagonal matrix such that Tjj = 1/ξ̃ss,j . Although more
complex strategies are possible [34], our method has so far
proved sufficient and simplifies many implementation details
of the control law.

VI. EXPERIMENTAL RESULTS

We will first consider comparing the constrained MPC,
where the control action is taken from (6) to that of the
linear feedback law (7), where constraints are not explicitly
accounted for but where the result is simply saturated at
±∆umax. In the case of this linear feedback law, we use
the same block diagram structure of Fig. 2, except the MPC
block is replaced with −K and a saturator. For the MPC
controller, the FGM solver uses a 32 bit word size for the QP
data and Jmax = 20 solver iterations. All simulation results
were done in Simulink using fixed-point arithmetic and a
FGM implementation for the constrained MPC case. Other
simulations using floating point math and quadprog to
solve the QP are indistinguishable and so are not shown.

Fig. 5 shows experimental results only of the input and
output for both axes for a 5.0 µm step command. Here,
the setpoint is small enough that the constraints are inactive
and the two controllers perform comparably as expected.
No simulated trajectories are shown since they do not differ
significantly at the scale of the figure. On the other hand,
Fig. 6 shows both experimental and simulated trajectories
where the setpoint is increased to 7.465 µm (only the y-
axis is shown since it best illustrates the point). This larger
setpoint activates the constraints. In simulation, the quality
of the linear feedback response (dashed-magenta) has de-
cayed considerably, while the experimental response (dotted-
blue) becomes unstable and the experiment is terminated
early. However, the trajectory under the constrained MPC
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Fig. 5: Step response of both axes to a 5 µm step command which
is small enough that the constraints are inactive and both controllers
perform comparably. Simulated trajectories are not shown since they
are not significantly different at the scale of the figure.
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Fig. 6: Step response of the y axis when both axes
are subjected to a 7.465 µm step command. The
simulated response has decayed considerably and
the experimental response is unstable.

control law still performs well for this size step command
in both simulation (solid-black) and experiment (dashed-
green), illustrating the advantage of MPC’s natural constraint
handling.

Indeed, we can push the stage farther using MPC, and
Fig. 7 shows the response to a step command of 8.0 µm. In
that figure, the middle row of plots is a zoomed in version
of the top row, to better show the steady-state behavior. The
black dotted line indicates the 1% settle boundary. Note that
no linear controller trajectory is shown here because this
size of setpoint results in instability in both simulation and
experiment.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have demonstrated an application of the
FGM to a two-axis piezo stage using a sample frequency of
25 kHz. The controller has a wider maneuvering range while
maintaining stability than a comparable linear feedback con-
troller, highlighting the benefit of MPC’s constraint handling
capability.

Future work will look for ways to achieve better steady-
state behavior. The slow convergence to the setpoint seen in
Fig. 7 is likely an artifact of using a constant disturbance
estimator to reject non-constant drift. Indeed, preliminary
simulations using a higher-order drift model show this same
type of behavior in simulation as well. We will therefore con-
sider compensating drift with either a more comprehensive
disturbance estimate or via inverting a drift model [35].

Alternative QP formulations could also be explored. For
instance, [36] develops a sparse and condensed formulation
that could lead to better numeric conditioning. It remains to
be seen however if that formulation will admit a solution at
a high enough sample rate.

Finally, future work will build on the methods developed

here to integrate z-axis control to acquire AFM images and
will also consider using the current control architecture with
a MIMO model which accounts for cross-axis coupling.
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