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Abstract— In this paper we describe an implementation of
non-raster scanning of atomic force microscopy images where
randomly placed short scans are combined with compressive-
sensing based image reconstruction algorithms to produce the
final image. We describe implementation details and compare
the achievable imaging rate and image quality to raster-scanned
images. Our experimental results show improvements of up to
approximately a five times reduction in scanning time while
revealing several practical challenges.

I. INTRODUCTION

The Atomic Force Microscope (AFM) is a nano-scale
imaging instrument which acquires an image of the sur-
face topography of a sample by interrogating it with an
atomically-sharp probe. While there are a variety of imaging
modes, the fundamental effect is that as the probe is brought
to the sample, the inter-molecular forces between the probe
and sample cause the probe to deflect. A controller is then
wrapped around that deflection signal to maintain a constant
level. The control output is then a measure of the sample
topology [1].

Although the AFM has excellent spatial resolution, one
key drawback is that the imaging process is slow—often on
the order of minutes for commercially available instruments.
This has led to a large research effort to increase the speed
of AFMs. Most of these efforts focus on various methods to
increase the overall speed of the system. Approaches include
building stiff piezo stages with higher first-resonance fre-
quencies (e.g., [2], [3]); replacing the standard triangle wave
reference with a reference signal which has a more friendly
harmonic content such as spirals or Lissajous patterns (e.g.,
[4]–[6]), or driving the stage with a pure sinusoid [7]; and
using advanced control methods, including very effective use
of feedfoward control [8]–[11]. In the z-direction, the sample
surface acts as an unknown disturbance, making feedforward
approaches less effective. Here, improvements have been
made with advanced feedback control techniques like H∞
and high speed hardware such as fast piezo stacks [7], [12].

One of the drawbacks to these approaches is that to
increase the actual imaging rate, all the pieces have to be
be improved in lockstep [13]. Increasing the speed of one
element is of limited value because it will only expose
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a bottleneck somewhere else. For example, increasing the
bandwidth of the xy-stage leads to a bottleneck in the
z-direction, and vice versa. Increasing either can expose
deficiencies in the power amplifiers or the sample rate of
the digital control system.

It is in this light that algorithmic approaches which seek to
improve the imaging rate not by moving faster but rather by
sampling less find their appeal. For a class of samples that
can be described by planar curves, a method termed Local
Circular Scanning (LCS) replaces the raster with a sequence
of circular scans which track the sample edge and can reduce
scanning time by an order of magnitude [14], [15].

Another vein which has received attention in the last few
years aims to leverage the idea of undersampling [16]–[18].
Taking advantage of the redundancy in many interesting
signals, this approach achieves increased imaging rates by
reducing the number of pixels to be acquired while, unlike
local techniques such as LCS, still producing full frame
images. The final surface image is created from the measured
pixels using signal processing and image reconstruction tech-
niques, motivated in many cases by the theory of compressive
sensing.

Perhaps the easiest scanning pattern for sub-sampling is
to simply skip some of lines in the scan [19]. Existing non-
raster scanning patterns such as spirals can also be applied for
sub-sampling of images and have been demonstrated experi-
mentally to produce faster imaging while still producing ac-
curate reconstrutions [16], [20]. However, from the theory of
compressive sensing, it is known that randomized sampling
is critical to producing accurate reconstructions for a broad
class of samples. Thus, ideally, one would acquire a random
collection of the pixels [17]. However, doing so requires the
tip to be repeatedly lifted and re-engaged with the sample;
each such engagement takes a significant amount of time.
Inspired by this, we have previously introduced the notion
of µ−paths to balance randomness with continuous scanning
[21]. In this paper, we give a hardware demonstration1 of this
approach [21].

II. COMPRESSIVE SENSING VIA SHORT µ-PATH SCANS

Most real-world signals, including the images of nano-
scale surface topography, are sparse or compressible when

1The software portion of the implementation described in this paper can
be found at https://github.com/rabraker/AFM_CS/
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Fig. 1: An example of a µ-path sampling pattern for a 64×64
pixel image.

represented in an appropriate basis. Compressive Sensing
(CS) is a signal processing technique for recovering un-
dersampled sparse or compressible signals from a relatively
small number of measurements [22].

CS methods seek the true image signal x ∈ Rn from the
following observation equation,

y = Φx = ΦΨη, (1)

where y ∈ Rm is the observation vector, Φ is an m × n
matrix defining the measurements, Ψ is an n × n sparsity
basis and η is the sparse representation of x in the domain
of Ψ. In general, m� n. In the AFM application, the probe
can only measure a single pixel at a time. As a result, Φ is a
sparse matrix with each row having only one nonzero entry.
Thus, y is a subset of x.

In traditional CS, random sampling, such as selecting to
sample each pixel with the same probability, is considered an
effective sampling strategy for stable reconstruction. How-
ever, random sampling does not offer significantly lower
data acquisition time for AFM, since the probe has to visit
scattered sampling locations, lifting the probe tip after each
measurement and reengaging it to the surface to acquire
the next pixel. Paths that limit the need to repeatedly re-
engage the tip are more desirable in practice. The µ-path
pattern, introduced in [21], uses small, linear scans, each
beginning at randomly selected pixels (see, e.g. Fig. 1 for
one such pattern). Scanning according to a µ-path pattern
involves moving the tip to the next starting pixel, engaging
to the surface, scanning along a short path, lifting the tip,
and repeating. This pattern aims to balance the need for
random, independent sampling with continuous tip motion.
Faithful recovery from µ-path scans has previously been
demonstrated through simulation [18], [23].

One common realization of the CS-based reconstruction
problem, known as basis pursuit (BP), is given by the
following optimization problem,

minimize ‖η‖1 subject to y = ΦΨη, (2)
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Fig. 2: Schematic depiction of the experimental setup

where ‖ · ‖1 is the l1 norm of the signal. While BP is a
computationally demanding algorithm, particularly for large
images, it does provide effective reconstructions. More effi-
cient greedy algorithms have also been developed, including
one by two of authors that was designed specifically for the
sampling matrices in the AFM setting [23].

III. EXPERIMENTAL SETUP

Our experimental setup, illustrated in Fig. 2, consists of
an Agilent 5400 AFM retrofitted with an nPoint NPXY100A
piezoelectric stage. Through a breakout box, the Agilent
5400 provides access to the z-axis deflection signal. When
the Agilent software is set to open-loop mode, a ±10 v
input on the standard control box allows control of the z-
axis piezo. The total range of the z-axis piezo is 7 µm.
The Agilent hardware does not provide access to the z-axis
stepper motor used for the coarse engagement, so for the
initial tip engagement to the sample, we use the standard
Agilent software. Once the initial engagement is completed,
we set the Agilent software to open-loop mode.

All control logic is programmed into a Xilinx LX150 Field
Programmable Gate Array (FPGA) inside a cRIO-9082 from
National Instruments. The cRIO includes modular 16 bit
analog-to-digital and digital-to-analog modules. In this paper,
all control is done at 25 kHz, a sampling rate chosen based
on the identified system dynamics.

A. Control

The control laws used for all three axes are simple integral
controllers of the form

U(q)

E(q)
= D(q) =

Kiq

q − 1
, (3)

where, for example, for the x-axis, E(q) = X(q) − Xref .
The errors for the other axes are defined similarly. We use
q as the discrete time Laplace operator to avoid confusion
with z representing the vertical axis.

The z-axis control signal is multiplexed between closed
and open-loop operation, as illustrated in Fig. 3. The decision
index i to the multiplexer is determined by the state machine
described in Section IV. During closed-loop operation, the
integral controller of (3) is used. To maintain a continuous
control signal, Dz needs to be pre-loaded with the right initial
condition when switching modes. The difference equation
associated with (3) is

ui(k) = Kie(k) + ui(k − 1), (4)
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Fig. 3: Control for the z-axis is multiplexed between open
and closed-loop. The shaded area represents the digital
control system, while the non-shaded region is the physical
system.

where e(k) = zref − zdfl is the difference between the
measured deflection and the reference deflection. Thus, pre-
loading the integrator is easily accomplished by storing
u(k − 1) = uz,ol(k − 1) in a register.

In general, the sample surface acts as a disturbance to
the z-axis control loop. When the tip is in contact with
the sample, the control signal uz is taken to represent the
surface topography of the sample [1]. Due to effects such
as hysteresis and creep, the control level is not absolute and
simply lifting and re-engaging the tip to the same place on
the surface can lead to significant differences in the control
level. As discussed further in Section V, this leads to some
challenges in interpreting µ−path scan data in the absence
of an absolute z-measurement.

IV. IMPLEMENTATION

Implementing the µ-path CS scheme involves operating
the AFM in several distinct modes, particularly in the z-
direction. In the xy-direction, the system must transition
from tracking a step command (in the transition to a new
measurement location) to tracking a scan pattern. For our
simple integral controller, this only involves changing the
reference signals xref and yref .

In the z-direction, the system must transition between
tip-descent, surface scanning, and tip retraction. Since our
instrument does not include a z−piezo position sensor, when
the tip is not engaged with the surface, the z-axis control is
necessarily open-loop. Thus, the z-axis must switch between
open and closed-loop operation.

Transition between, and operation in, these different
modes is implemented as a simple state machine. For the x
and y-axis control loops, the state machine only determines
the reference signal. For the z-axis, the state machine is part
of the control law itself. The state machine consists of the
following stages which are executed in sequence:

1) Initialization: In this state, users have direct, manual
control over the z-axis piezo, which allows them to
ensure that when the rest of the process is initialized,
the system is in a well defined, known state. Users also
control the trigger for the state machine to enter the
next state in the sequence.

2) xy-move: In the first time step of this state, we read a
new xy-setpoint from a FIFO (first in, first out) buffer
and set xref and yref to those values. In subsequent
time steps we do not read from the FIFO buffer, but
just recycle that same setpoint. The trigger to move
to the next state is a detection that the x(k) and y(k)
have reached a settling criterion.

3) Tip engage (or z-engage): We turn on the PI z-axis
controller, which begins driving the tip towards the
sample surface. Here, we use a smaller Ki, which
results in somewhat slower descent and less windup
while the tip is out of contact. Transition to the next
state occurs when |e(k)| reaches a settling criterion.

4) µ-path scan (or xy-scan): We initiate reading a scan
trajectory from the host-to-FPGA FIFO buffer, and
start logging data into the FPGA-to-host FIFO buffer.
The trigger to move to the next state is that the xy
trajectory we are following ends, which is determined
by packing meta data into the host-to-FPGA FIFO
data. This will be described more fully in Sec. IV-A.

5) Tip up (or z-up): The values of xref and yref are set
to the last value of the trajectory we were following in
state 4 above, and we issue a step-up command of size
zup to the z-axis control. We then wait Nup samples,
before transitioning back to state 2.

Three cycles of this sequential process are illustrated by
the time series in Fig. 4. Each state is represented by a
different color, as indicated in the legend.

A. FIFO data packing

Data is transferred between the Host Computer and the
FPGA in real time via a Direct Memory Access (DMA)
FIFO buffer. At each time step, the FPGA control law
needs to acquire the current reference trajectory (state 4)
or setpoint (state 2). Similarly, xy sensor measurements, z-
error deflection data, and z-axis control data all need to be
transferred back to the host. The FPGA is limited to a total
of three DMA FIFO buffers. Only a single scalar value can
be pushed into the FIFO stack at a time (i.e., one cannot push
a vector type). Thus, at each time step, we sequentially push
data into the stack with the final item being a signed integer
indicating the current state of the state machine, which can
be visualized as:

FIFO = {. . . x1︸︷︷︸
push scalar

, y1, uz,1, e1, i1, x0, y0, uz,0, e0, i0︸ ︷︷ ︸
pop in multiples of 5

}.

Due to the possibility of a FIFO timeout, this is somewhat
risky. On the one hand, if we wait on a piece of data too
long, we violate the required sample time. On the other hand,
setting a finite timeout brings the possibility of missing a
piece of data and if that happens we lose all context of
what the incoming data means. For smaller image sizes,
these timeouts are not an issue and collecting all generated
data is very useful for debugging. However, throughput
becomes an issue for larger images. In that case, the timeout
risk can be mostly eliminated by only transferring the data
generated in state 4, which allows the host side time to
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Fig. 4: Three cycles of the µ-path scanning process. Each
state of the state machine is indicated by color. The y-axis
is qualitatively similar to the x-axis and so is not shown.

catch up in emptying the incoming buffer. In either case,
if a timeout does occur, the entire imaging process enters an
abort routine.

V. COMPARISON TO RASTER SCANNING

In this study, we use an AppNano SICON-50 cantilever
which is 450 µm long, has a spring constant between 0.02
and 0.8 N/m and a resonant frequency between 5 and
25 kHz. We consider two sample gratings. The first is an
UltraSharp TGZ02 linear grating which has a 3 micron
pitch with 120 nm features. The second is a Ted Pella CS-
20ng calibration grating. All features on the CS-20ng are
20 nm high. Although the grating has areas with several
different sample patterns, here we use the area with circles
on a 500 nm pitch. The Agilent 5400 does not include a
z-axis height sensor. In general, this makes it impossible
to determine the relative heights between CS measurements.
To work around this, we make the µ-paths 2 µm (500 nm)
long for the TGZ02 (CS-20ng) gratings, which ensures that
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Fig. 5: A single row of the raster images in Fig. 6, which
illustrates the limitation on the z-direction bandwidth.

if the scan starts on a feature, the scan must exit the feature,
allowing us to register all CS measurements to a common
height.

To ensure consistency with the µ-path scans, all raster
scans are taken with our own software. All scans were
taken with 512 lines which produces a 512×512 pixel
image. Taking the uz control signal to represent the sample
height and discarding data from the re-trace, we divide the
remaining data into 512×512 bins based on the x and y
sensor measurements. We then average the data in each bin
to obtain the value of one pixel. Due to both drift in the z-axis
piezo and sample tilt, this data must generally be de-trended.
Though there are many procedures for such de-trending, in
this paper we first de-trend each individual line. We then
remove the best plane fit from the entire image. As a final
step, we subtract the mean from each image, so that they
can be mapped to the same color intensity in the images.
Based on the sample feature sizes, we limit the range that
the colormap represents which prevents one outlying data
point from washing out all the images.

TGZ02 Scans On this grating, we performed raster scans
at 0.1, 1.0, 2.5 and 5.0 Hz over a 20 µm square area. (Note
that Hz refers to line rate.) The resulting images are shown
in the top row of Fig. 6. In addition, Fig. 5, shows the post-
processed height data for a typical row of pixels. It is clear
from these plots that 5 Hz is beyond the capability of the
AFM for this sample and scanning at this rate wears and/or
damages the tip to the extent that it can no longer be used
for finer scans.

For the TGZ02 grating, we performed µ-path scans with
sampling densities of 3%, 10%, and 15%, with a scan
velocity equivalent to a 1.0 Hz raster scan. The reconstructed
images are shown in the bottom row of Fig. 6.

CS-20ng Scans We performed raster scans over the area
with circles on a 500 nm pitch area at 0.25, 1.0, 5.0, and
10 Hz with 512 lines over a 5 µm square. The resulting
images are shown in Fig. 7 in the top row. Additionally,
Fig. 8 illustrates the x-direction tracking error in the top plot.
The bottom plot shows the post-processed height data for a
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Fig. 6: Images of a 20 µm square area of the TGZ grating. All images are 512×512 pixels. (top row) Raster scans for scan
rates of, from left to right, 0.1 Hz, 1.0 Hz, 2.5 Hz, and 5 Hz line rates. (bottom row) Reconstructions from µ-path scans at,
from left to right, nominal sampling of 3%, 10%, and 15% sampling.
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Fig. 7: Raster scans of a 5 µm square area of the CS-2ng grating. All images are 512×512 pixels. (top row) Raster scans
for scan rates of, from left to right, 0.25 Hz, 1.0 Hz, 5 Hz, and 10 Hz. (bottom row) Reconstructions from µ-path scans at,
from left to right, nominal samplings of 5%, 10%, and 15%.

typical row of pixels. The oscillation in the 0.25 Hz cross
section is likely due to vibration in our laboratory building.

When scanning much slower than 0.25 Hz on this grating,
that disturbance becomes pronounced enough to be visible



0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

0 100 200 300 400 500

-0.05

0

0.05
0.25Hz

1.00Hz

5.00Hz

10.00Hz

Fig. 8: Raster scanning of the CS-20ng grating. (top) x-
direction tracking error for different scan frequencies with
time normalized. The triangle waves for each frequency are
offset for clarity with the actual trajectory shown in dashed
red. From bottom to top are 0.25 Hz, 1.0 Hz, 5.0 Hz, and
10 Hz. (bottom) A single row of the raster images in Fig. 7,
which illustrates the limitation on the z-direction bandwidth
and the oscillatory disturbance seen at slow scan rates.

in the image. This issue is mitigated in the TGZ02 scans due
its comparatively larger feature size.

For this sample, we performed 500 nm long µ-path scans
with nominal densities of 5%, 10%, and 15% with a tip
velocity equivalent to a 1.0 Hz scan. The reconstructed
images are shown in the bottom row of Fig. 7.

Discussion From the images, it is apparent that CS does
well in reconstructing the image from limited experimental
data. As expected, reconstructed image quality goes up with
the increase in the amount of sampling, though the recon-
struction tends to lose some quality near the image edges.
However, the raster scans also produce some artifacts, which
is most noticeable in the scans of the CS-20ng. Specifically,
the images show that the area between the holes in the x-
direction is higher than the surrounding area. This shows
up regardless of the sample orientation, indicating that it is
a result of the raster scan or post-processing itself, not an
unexpected feature of the grating.

In an attempt to provide a quantitative comparison between
the different images, we use two different figures of merit.
The first is the Structural Similarity Index (SSIM) [24]. The

TABLE I: Figures of merit for different raster scan rates and
µ-path scan densities for the TGZ02 and CS-20ng gratings.

scan SSIM PSNR time [sec.]

T
G

Z
02

0.1 Hz raster 1.0 Inf 5120
1.0 Hz raster 0.653 20.84 512
2.5 Hz raster 0.575 20.17 204.8
5.0 Hz raster 0.411 17.54 102.4
15% µ-path 0.582 23.10 123.53
10% µ-path 0.535 22.55 81.10
3% µ-path 0.492 21.35 26.65

C
S-

20
ng

0.25 Hz raster 1.0 Inf 2048
1.0 Hz raster 0.305 20.81 512
5.0 Hz raster 0.143 17.30 102.4
10 Hz raster 0.042 13.94 51.2
15% µ-path 0.220 18.53 104.83
10% µ-path 0.207 19.34 73.69
5% µ–path 0.165 19.52 35.69

second is the Peak Signal to Noise Ratio (PSNR) [18]. Both
metrics compare a master image to some distorted version,
and have been primarily developed by the image processing
community in an effort to provide a quantitative measure
of image corruption, e.g., when comparing compression
algorithms. Here, for the TGZ02 and CS-20ng grating images
we take the scans at 0.1 Hz and 0.25 Hz, respectively, as the
master image and compute the metrics for both the faster
scans as well as the reconstructed µ-path images.

Both metrics have been used before to compare simula-
tions of CS reconstruction in the context of AFM [18], [20].
We believe, however, that the numbers presented here in
Table I should be interpreted with some caution as it remains
somewhat of an open question of how to best compare
experimental images from AFM. For example, it has been
our experience that even comparing two raster scans over the
same area and taken at the same scan rate can yield startlingly
low SSIM and PSNR numbers. One of the issues causing this
is that the xy-plane drifts by a small amount between images.
To counteract this particular effect, the numbers in Table I
were computed on a sub-slice of both the master image and
the test image where one slice is shifted to provide better
alignment.

From the metrics in Table I, both the 10% and 15% µ-path
scans of the TGZ02 are on par (depending on which metric
you choose) with the 2.5 Hz raster while being considerably
faster. For the CS-20ng all three µ-path scans outperform the
5.0 Hz scan on both metrics while being close to the 1 Hz
scan terms of PSNR and offering compelling reductions in
scan time.

One of the clear advantages of µ-path scanning is that
speed increases do not solely depend on moving the tip
across the sample faster. Though here we have scanned in
contact mode, we believe our method should be equally
applicable to tapping mode. In either case, the ability to
increase imaging speed while scanning more slowly should
be beneficial to imaging soft specimens.

It is both interesting and important to note that we do not
achieve the reduction in imaging time which our previous es-
timates predicted [21]. In that work, we estimated that the tip



TABLE II: Breakdown of timing for the different µ-path
scans. Each column is a percentage of the total scan time
reported in Table I.

scan xy-move z-engage xy-scan z-up
T

G
Z

02 15% 8.54 54.89 35.30 1.27
10% 8.57 54.87 35.30 1.27
3% 8.70 54.79 35.24 1.27

C
S2

0-
ng 15% 7.43 50.56 40.55 1.46

10% 7.49 50.36 40.69 1.46
5% 7.28 50.60 40.66 1.46

engagement should take approximately 5 times longer than
the disengagement. Table II breaks down the time for each
µ-path scan. Each column is the percentage of the overall
time taken in executing each state (recall Section IV). From
this table, the re-engagement process takes about 40 times
longer than the disengagement. The next section explores
some of the limitations we encountered in the engagement
process and some ideas for how they may be overcome in
the future.

VI. LIMITATION ON SPEED

The fundamental challenge with achieving speed increases
through CS is the need to engage and disengage the can-
tilever with the sample surface for each measurement point.
Table II breaks down the timing for the various µ-path
scans in terms of percentage of total time. The time to re-
engage the sample takes about 50% of the total imaging time.
Thus, minimizing the re-engagement time is fundamental to
achieving rapid imaging with CS. Two of the main factors
that control the amount of time required to engage the sample
are: (1) the descent speed and (2) the starting height above
the sample surface.

Both of these factors are affected by the interaction
between the tip and probe which can be approximated by
the Lennard-Jones model

F (r) =
−A
r2

+
B

r8
, (5)

where A and B are parameters depending on the tip and
sample properties and geometry, and r is the distance be-
tween the tip and sample [25]. A plot of (5) is shown in
Fig. 9. When the tip is far away from the sample, the forces
are dominated by the −A/r2 term and as the tip nears the
sample surface, the interaction becomes dominated by the
B/r8 term.

A. Limitations on Approach Speed

After dis-engagement, the sample is moved to a new
location in the xy-plane. The cantilever tip is then an
unknown distance above the sample surface and should be
sufficiently far away that F (r) ≈ 0. Thus, when we begin
the tip engagement and the z-axis PI controller is turned on,
the deflection signal remains effectively constant until the tip
begins to enter the attractive regime. Ultimately, our goal is
to re-engage the sample without imparting too much force.

0 1 2 3 4 5
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6

Fig. 9: Interaction force curve between the sample and the
probe.

In Fig. 4, aside from residual oscillations, the tip trajectory
does not really overshoot, and one might imagine that the
descent could be sped up by increasing the PI gain (recall
that we use a different gain here than while scanning).

In practice, increasing the gain has two negative impacts.
First, it increases the amplitude of the residual oscillations,
which degrades the resulting image. The second is that
on occasion, the larger oscillations will refuse to decay
(exhibiting a limit cycle like behavior) or decay very slowly.

In this work, we address these issues first by limiting
the gain used during the engagement, though unfortunately,
this increases the overall scanning time. Second, we take
advantage of the observation that starting the xy-scan will
collapse the oscillations when they refuse to decay. Thus, in
the images generated above, we set an upper limit on how
many sample periods we are willing to wait for the z-axis to
settle before starting the scan. This keeps the imaging process
moving along, but unfortunately can lead to undesirable
transients at the beginning of the xy-scan.

B. Starting Height Above the Sample

Ideally, we would lift the tip just high enough above the
sample to prevent a tip-sample collision while we execute
the xy-move and in prior work this was one of the as-
sumptions made in calculating our timing estimates [17],
[21]. Unfortunately, the interaction forces between the tip
and sample keeps the tip clamped to the sample surface
until the cantilever is bent far enough that the spring force
exceeds the tip-sample attractive force. This means that the
height of disengagement is farther from the sample than the
engagement point [26]. Thus, it is insufficient, e.g., to step
the z-axis up by say 25 nm (for the CS20-ng). Indeed, we
found that we needed to step up by approximately 350 nm
to fully break contact with the CS-20ng. This is a major
contributor to the re-engagement time. One possible way to
overcome this would be to step up by a large amount to
break contact and then quickly step down some fraction of
that while performing the xy transition.

VII. CONCLUSIONS AND FUTURE WORK

In this work we have given an experimental demonstration
of ideas we have previously pursued through simulation stud-
ies [17], [18], [21]. Our µ-path based sub-sampling produced



quality reconstructed images, and, while we did not see the
full speed increase in imaging time we previously estimated,
significant gains over raster imaging were demonstrated.
The experiments also revealed that reduced improvement is
largely due to complexities in re-engaging the sample.

It is clear from the discussion is Sec. VI and Figs. 5 and
8 that, at least in these results, the limiting factor for both
scanning methods is primarily in the z-axis. Although the
frequency response of the piezo tube in our AFM does not
begin to rolloff until about 2 kHz, there is a prominent,
lightly damped pole-zero pair at about 215 Hz. In raster
scanning, this mode limits the achievable bandwidth using PI
control and thus limits the scan rate. Similarly, it is this mode
which gets excited during the descent in µ-path scanning,
frustrating our attempts to descend faster.

The sample engagement problem has not received much
attention in the literature, particularly when considering how
to do so as rapidly as possible. Thus, an interesting area
for future work is to study the dynamics during this phase
and develop control schemes to account for them. This
should allow a much more complete characterization of the
fundamental limitations in our µ-path approach and permit
a more complete comparison to the known limitations on
raster scanning [27] as it relates to z-axis bandwidth.
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