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A Comparison of Tracking Step Inputs with a Piezo
Stage Using MPC and Saturated LQG Control

Roger A. Braker and Lucy Y. Pao

Abstract—Compressed Sensing for Atomic Force Microscopy
is a newer imaging mode that requires the piezo stage be driven
rapidly between measurement locations. In contrast to raster
scanning applications, this translates to a setpoint tracking prob-
lem. This paper considers the setpoint tracking performance of a
piezo nano-positioning stage subject to rate-of-change limitations
on the control signal, which we derive from the current limit of
the power amplifier. To compensate the vibrational dynamics
of the stage, we consider a model predictive control scheme
(MPC) and a linear quadratic Gaussian (LQG) controller which
saturates the control increment. In both cases, hysteresis and
drift are compensated via dynamic inversion. We analyze the
robustness of both schemes using classical methods. We conclude
that model predictive control is of limited practical utility because
selecting the control weights such that model predictive control
is nominally beneficial results in degraded robustness, and thus
in poor experimental performance.

I. INTRODUCTION

The Atomic Force Microscope (AFM) is a nano-scale
imaging instrument which acquires an image of the surface
topography of a sample by mechanically interrogating it with
an atomically-sharp probe [1], [2]. Typically, the probe is
scanned across a specimen in a raster pattern, sequentially
acquiring pixels in an image. Although this process gives
the AFM excellent spatial resolution, the serial acquisition of
pixels limits the speed of any given instrument, yielding frame
rates on the order of minutes for many commercially available
instruments.

While slow imaging is inconvenient for static samples, it
represents a fundamental limitation in the study of dynamic
specimens. Many methods have been proposed to increase
AFM frame rates, including better mechanical design [3],
[4], using advanced control methods [5]–[8], and alternative
scanning methods [9]–[14].

One newer alternative to raster scanning, and which is
our interest here, is the application of Compressive Sensing
to AFM [15]–[17]. The central idea of compressive-sensing-
based imaging is to leverage the redundancy present in most
interesting images such that the number of pixels to be
acquired is reduced. For good guarantees on reconstruction
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quality, measurements in compressive-sensing-based imaging
need to be randomly distributed across the specimen. Each
measurement might acquire a single pixel [16] or short
string of adjacent pixels in a micro-scan [18], [19]. Once
a measurement is completed, the AFM probe is retracted
from the sample surface, moved in the XY plane to the
next measurement location and finally re-engaged with the
specimen surface before the next measurement is acquired.
Details of a basic implementation of this approach can be
found in [18].

In this paper, we are concerned with the point-to-point
movement in the XY plane between measurement locations.
Because the probe is not in contact with the specimen during
this operation, it is desirable to minimize the time to move
between measurement locations. Thus, in contrast to standard
raster scanning where the control goal is to minimize overall
tracking error to a triangular reference, the goal here is to
minimize the settling time to a step input. Point-to-point
movements by AFM are also of interest in other areas like
viscoelastic property mapping [20].

One of the primary constraints in setpoint tracking with
our piezo stage is the current limit of the power amplifier,
which roughly translates to a slew-rate limitation on the
control signal. In principle, minimizing the settling-time of
such point-to-point motions is a classic time-optimal control
problem. However, for stages with dynamics more complex
than a second-order system, including the stage in our own
lab, closed-form solutions to the minimum-time problem are
intractable.

An enticing alternative to explicitly handle the slew-rate
constraint is MPC with a purely quadratic cost. Given a
discrete-time state-space system {A,B,C, 0} with state xk,
and control input uk, such an MPC scheme solves, at each
time step, the optimal control problem

min
v

zTNPzN +

N−1∑
i=0

zTi Qzi + 2zTi Svi + vTi Rvi (1a)

s.t. zi+1 = Azi +Bvi (1b)
z0 = xk, (1c)
vi ∈ U (1d)

where U is a polyhedron, P solves the Discrete Algebraic
Riccati Equation (DARE), Q and R are symmetric matrices
and, together with S, satisfy

R > 0 (2)

Q− SR−1ST ≥ 0. (3)
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Fig. 1: The overall plant model consists of a hysteresis model F [·], a drift model Gd, and a vibrational model Gvib. The effects
of drift and hysteresis are compensated for via dynamic inversion.

In this paper, we restrict U to model actuator constraints (e.g.,
saturation). The solution to the quadratic program (QP) (1)
results in a sequence of optimal controls v0 . . . vN−1. One sets
uk = v0 and repeats the process at the next time step. If one
eliminates the constraint (1d), then the control action reduces
to linear state-feedback. That is, v0 = −Kxk where

K = (BTPB +R)−1(BTPA+ ST ), (4)

is the solution to the infinite horizon LQR problem associated
with Q, R and S.

Historically, one of the challenges of applying MPC to
systems with fast dynamics is the computational demand
imposed by solving a QP within a small sample period.
However, advances in both hardware and algorithms have
mitigated this issue. For example, [21] shows that when U
is a simple box (i.e., a saturating constraint), sample rates of
up to 1 MHz can be achieved with high-end FPGAs using an
algorithm called the Fast Gradient Method (FGM).

In recent work, we applied the FGM formulation of [21]
to our piezo stage and showed that, given a particular set
of weighting matrices, we could increase the stabilizable
range of setpoints compared to simply saturating an equivalent
linear feedback [22]. Others have also applied MPC to similar
systems [11], [23]–[25]. In all these cases, little insight is given
into how the cost function was tuned, an issue we consider
here in depth.

Due to the increased cost and complexity of implementing
MPC, it is crucial to characterize how MPC compares to linear
feedback. In some cases, no comparison to linear control is
given [11], [25]. In many cases where MPC is compared to a
linear feedback law [23], [24], including in our own prior work
[22], de-rating the linear feedback to limit constraint violation
is never considered. Thus, one of the important questions we
seek to answer in this paper is “how much performance is
sacrificed by using a de-rated linear feedback compared to
MPC?”. In section VI, we show that, in contrast to simulation
results, experiments with de-rated (i.e., large) control weights
have better performance, obviating the need for MPC.

We explain this somewhat surprising result in Section VI-A
by showing that robustness of the control laws increases
as the control weight increases. While many authors have
considered robustness in MPC, many of these results assume
direct measurements of the state vector [26]–[28], which is

unrealistic. However, as we indicated in (4), it is a well
known, though perhaps under exploited, result that when the
control trajectory generated by (1) is within the interior of
U, the control action is equivalent to an LQR-based linear
feedback law. In the setpoint tracking application considered
here, where the constraint limits the rate of change on the
control, this will always be the case as the system nears a
given setpoint. Thus, within some region around any setpoint,
classical ideas like gain and phase margin or the sensitivity
function gain are directly applicable. We show that (up to a
point) de-rating the design improves those metrics. We argue
that the nominal performance gains achieved when using a
more aggressive MPC (due to constraint handling) are nullified
by the concomitant decrease in robustness. We find it unlikely
that we are the first to apply these classical metrics in the
context of MPC; however, we have not found any other papers
which do so.

Another related limitation of [22] is that we did not consider
the effects of drift and hysteresis and only considered tracking
a single setpoint with the stage starting at rest. Other studies
also ignore hysteresis and only consider a limited size of inputs
[23], [24]. Yet, when tracking a sequence of random setpoints
across the range of the stage, the effects of hysteresis become
much more prominent. Thus, in this paper, we employ inverse
drift and hysteresis compensation and test the control laws
with a random sequence of steps. However, these inversions
are not perfect, which contributes to the need for good
robustness.

To summarize, the main contributions of this paper are to

• Give explicit details on how the cost function was tuned
(Sections V and VI).

• Compare the experimental performance of MPC to sat-
urated linear feedback (SLF) across a range of control
weights varying from aggressive to highly de-rated (Sec-
tion VI).

• Show that for our chosen state weighting schemes,
closed-loop robustness plays a more prominent role in ul-
timate experimental performance than explicitly handling
constraints (Section VI-A).

The overall control structure we consider in this paper is
illustrated in the block diagram in Fig. 1. We consider the
plant to be a cascaded model of hysteresis (F), drift (Gd) and



3

piezoC300

Fig. 2: Schematic of the augmented current measurement used
in characterizing the C300.

vibrational dynamics (Gvib). Modeling these three systems is
the subject of Sections III-C, III-B, and III-A, respectively.
Section IV develops the control structure and associated
closed-loop equations. Section V explores two schemes to
design the weighting matrices. The designs are evaluated in
simulation and experiment in Section VI.

II. EXPERIMENTAL TESTBED

The AFM in our lab consists of an Agilent 5400 that has
been retrofitted with an nPoint NPXY100A piezo stage, which
provides lateral movement of the sample. The NPXY100A,
which is the focus of this paper, is driven by an nPoint C300.
The C300 amplifies the low voltage (± 10 volts) control inputs
to a high voltage signal which drives the piezo actuators and
provides signal conditioning for the capacitive position sensors
in the stage. Although the C300 can implement a basic PID
controller, in this work we always operate the C300 in open-
loop mode. Unfortunately, even in open-loop mode, signals in
the C300 still run through an internal DSP, which introduces
around 360 µs of delay. Nominally, the NPXY100A has a
range of 100 µm, though in practice the usable range is about
67.5 µm when operated in open-loop mode.

All control logic is programmed into a Xilinx Spartan-6
LX150 FPGA in a cRIO 9082 from National Instruments. In
this work we use a sampling frequency of 25 kHz, which is
based on the system dynamics (see Fig. 3 in Section III-A).
With a 25 kHz sampling frequency, the 360 µs of delay
translates to about 9 samples.

In characterizing the limitations of this system, it will be
helpful to enable a direct measurement of the power amplifier
current, IX , of the C300. This measurement is obtained by
re-routing the C300 drive signal through a low-side current
sensing resistor (Rsense = 0.1Ω) as shown in Fig. 2. The
voltage across this resistor is amplified by an op-amp circuit
so that

IX =
1

KopRsense
Vop

where Kop ≈ 151 is the gain of the operational amplifier.

III. SYSTEM MODELING

To keep the discussion manageable, we will focus the
discussion on the X-direction. We model the overall plant

Fig. 3: The solid red curve is the frequency response from
control input to stage position output in the X direction. The
dashed-black curve is the vibrational model, Ĝvib.

for the X-direction as three cascaded systems: F which
models the hysteresis of the piezo, a drift model Gd, and a
vibrational model Gvib. This cascaded structure is shown in
Fig. 1. In general, the effects of hysteresis are most noticeable
when moving across wide ranges. Thus, by using relatively
small input signals, the drift and vibrational dynamics can be
identified separately from the hysteresis. Here, we model both
Gvib and Gd as linear, time-invariant discrete-time systems.
The dynamics of drift are predominantly low frequency while
vibrational aspects on the other hand are fast by comparison,
which allows the two systems to be easily separated in the
identification. Modeling these three components is the subject
of the next three subsections.

A. Modeling Gvib

To obtain an experimental frequency response of Gvib, we
use a stepped-sines method (single frequency at a time).
The amplitude of the driving sinusoid is chosen to be small
enough that the effects of hysteresis are minimized. After the
system reaches steady-state, the input and output signals are
demodulated into their first (complex) Fourier coefficients, the
ratio of which yields the frequency response at that frequency.
Fig. 3 shows the resulting experimental frequency response
function (FRF) as the solid red curve.

Obtaining a parametric model of Gvib for control design
involves two steps. We obtain a preliminary model using an
Eigenspace Realization Algorithm (ERA) [29]. In general, the
ERA does not produce a model with poles at z = 0, which
is what we need in order to model the delay. Thus, the delay
in the frequency response is divided out of the FRF before
passing it to the ERA algorithm.

The second step uses the model generated by the ERA
as the initial guess to a non-linear least squares problem
which minimizes the logarithm of the ratio of the experimental
frequency response to that of the model [30]. Though Sidman
et al. develop the idea for continuous-time models, their
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TABLE I: Pole and zero locations of Ĝvib. The graphic to the
right shows their location (excluding the nine poles at z = 0
and the non-minimum phase zero.) in the Z-plane.

pole zero
0.8113±0.1832 0.9647 ± 0.2509
0.9625±0.2584 0.9753 ± 0.2101
0.9718±0.2136 0.9945 ± 0.0933
0.9786±0.1626 0.9942 ± 0.0969
0.9946±0.0912 –
0.9942±0.0968 –

0.9047 -1.55
(9) 0 0.8368

strategy is easily adapted to fit a discrete-time model. In this
scenario, the optimization is given by

min
θ

M∑
i=1

∣∣log(G(ejωiTs))− log(Ĝ(ejωiTs |θ))
∣∣2 (5)

where ωi is each frequency in the experimental frequency
response and Ĝ(ejωiTs |θ) is the model parametrized by the
vector θ. The model Ĝ(z|θ) is composed of first and second-
order factors

Ĝ(z|θ) = K

∏nrz−1
i=0 (z − bri )∏nrp−1
`=0 (z − ar`)

×
∏ncz−1
j=0 (z2 + bc2jz + bc2j+1)∏ncp−1
m=0 (z2 + ac2mz + ac2m+1)

z−ρ (6)

where nrz and ncz (resp., nrp and ncp) are the number of
real and complex zeros (resp., poles) in the model generated
by the ERA. The parameter vector θ is given by

θ =[br0 . . . b
r
nrz−1

, bc0 . . . b
c
2ncz−1, a

r
0 . . . a

r
nrp−1

, ac0 . . . a
c
2ncp−1,

K, ρ].

Due to the logarithms in (5) and the multiplicative structure
(6), the Jacobian of log(Ĝ(z|θ)) is surprisingly easy to calcu-
late. Details can be found in [30], though some modifications
are required for the discrete-time case.

The model structure (6) includes a fractional delay z−ρ.
This allows us to include the delay as a term in the decision
variable and obviates the need to optimize over integers. This
is further beneficial because we are not guaranteed that the
latency from input to output is an exact integer multiple of
the sample period and allowing a fractional delay helps the
optimization to more accurately match the phase. In the final
model, we round ρ to the nearest integer. In this work, we do
not model the modes above 1100 Hz. Thus, the optimization
(5) is only done over frequency up to 1100 Hz. The final pole
and zero locations for Ĝvib are listed in Table I.

B. Drift Modeling

We model drift as the transfer function

Ĝd(z|θ) = θ5
(z − θ1)(z − θ2)

(z − θ3)(z − θ4)
.

Fig. 4: The stage is given a step input (dash-dotted black) with
an amplitude of 1.0 volts, which results in the solid blue output
trajectory. The response of the combined Gvib and Gd models
is shown as the dashed red, while that of the vibrational model
alone is the dotted black curve.

Due to the comparatively slow dynamics of drift, it is more
attractive to identify the drift model in the time domain rather
than the frequency domain. We give the stage a step input
with relatively small amplitude (to minimize the effects of
hysteresis). The stage response is shown as the solid-blue
curve in Fig. 4, while the simulated response of the vibrational
model is shown as the dotted-black curve. The piezo drift
is evident in the slow increase of stage position after the
vibrational dynamics have decayed.

Let Yexp represent the step response data collected from the
stage and Yvib be the response of the model Ĝvib to the same
input. The goal then is to solve the non-linear least squares
problem

min
θ

∣∣∣∣ĝd(k|θ) ∗ Yvib − Yexp
∣∣∣∣

2
(7)

where ĝd(k|θ) is the impulse response corresponding
to Ĝd(z|θ), ‘∗’ represents the convolution operator, and
θ = [θ1 . . . θ5] is the vector of parameters. To the extent that
Gvib accurately models the vibrational dynamics, the inclusion
of Yvib in (7) effectively nullifies the vibrational aspects in the
optimization. This is possible because, since we have a SISO
system, Gvib and Gd commute. The non-linear optimization
problem (7) is solved with MATLAB’s lsqnonlin and
results in the red curve in Fig. 4, which shows the simulated
step response of ĜdĜvib.

C. Hysteresis Modeling

In typical raster scanning applications, hysteresis manifests
as a bowing of the trajectory as the stage tries to track the
linear ramps in a triangle wave (see, e.g., Fig. 3 of [7]).
To motivate the need for hysteresis compensation in a step
tracking application, consider Fig. 5, which shows an input
signal of various filtered steps applied open-loop to the stage.
The solid black curve is the stage response, while the dotted-
black curve is the input (scaled by the nominal DC-gain of
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Fig. 5: The stage is driven by a sequence of filtered step inputs
shown in the dotted black curve. The resulting stage response
is the solid black curve, which shows good agreement,
e.g., at the first step, but much worse agreement for larger
steady-state values. The dashed red curve is the response of
the overall combined model of Ĝvib, Ĝd, and the complex
hysteresis model F .

Fig. 6: The solid curve is the transfer function, GIX ,uX
, from

low voltage control to power amplifier output current, which
is upper-bounded by the dotted and dashed curves, which
represent a pure discrete derivative multiplied by the bounds
(11) and (12), respectively.

GdGvib), which shows good agreement for the first step, but
much worse agreement with the later steps, particularly those
with large amplitudes. Effectively, the gain of the system
depends on the control history, since for the same steady-state
value of control, the steady-state value of the stage changes.

There are many models for hysteresis [31]–[33]. Here, we
opt for simplicity (and by proxy, fast computation) and use the
Modified Prandtl-Ishlinksi Hysteresis model developed in [34].
This hysteresis model is composed of a linear combination
of saturation operators cascaded with a linear combination
of classic hysteretic play1 operators. The overall input-output
relationship of the modified hysteresis operator F [·] is

F(uX) = wTs S
[
wTHH[uX , z]

]
where S and H are vectors of elementary saturation and play
operators, respectively, and where ws and wH are vectors of
weights. The ith elementary play operator with associated
threshold diH , output ξik, and input νk is defined by the
recursive relationship

ξik = Hi(νk| diH) = max{ξik−1 − diH ,min{ξik−1 + diH , νk}}.

In contrast, the saturation operator has no memory. The
input-output relationship of the ith elementary saturation op-
erator with associated threshold diS is defined as

µk = Si(pk|diS) =


max{pk − diS , 0} diS > 0

pk diS = 0

min{pk − diS , 0}, diS < 0.

1The term “play” is derived from the operator’s use in modeling mechanical
slop.

for an input pk and output µk.
If the thresholds diH and diS are pre-defined, [34] shows that

it is possible to fit the weights wS and wH as the solution to
a quadratic program. Using the input and output data shown
in Fig. 5, we fit the weights wH and wS with several different
numbers of operators. Though the quality of the fit increases
with more operators, we found that the improvement did not
increase substantially beyond 7 of each operator. The resulting
fit with 7 saturation operators and 7 hysteresis operators is
shown in Fig. 5 as the dashed red curve (which also includes
the drift and vibrational models). As the inset in that figure
shows, it is possible to improve on this fit. One common
alternative to cascading the drift and hysteresis models is to
put them in parallel with each other [35], [36]. While this
does indeed lead to a slightly smaller residual, we found it
gave worse closed-loop performance than the present method.

D. Power Amplifier Characterization and Limitations

The high voltage output of the C300 is current limited
to 100 mA. The solid black curve in Figure 6 shows the
transfer function, GIX ,uX

, from the low voltage input uX of
the C300 to current IX flowing through the stage. The current
is measured via the sensing resistor and op-amp shown in
Fig 2. Because the piezo actuators are highly capacitive, at
frequencies below about 600 Hz, GIX ,uX

looks like a pure
derivative. Thus, we can factor GIX ,uX

as

IX(z) = GIX ,uX
uX(z) (8)

= (z − 1)GouX(z)

= Go(z)∆uX(z) (9)
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Ideally, one would enforce the current limit via a state-
like constraint using (8) and a parametric model of GIX ,uX

.
Although it is likely possible to solve such a problem with a
high-end FPGA using, e.g., the Alternating Direction Method
of Multipliers as developed in [21], it is not possible to
solve that problem on our hardware. Instead, we would like
to approximate Go as a constant, which will lead to a box
constraint on ∆uX . Thus, we need a bound (∆uk)max such
that

|∆uXk
| < (∆uX)max =⇒ |Ipow| < Imax. (10)

It is straightforward to show that such a bound is given by

(∆uX)max =
Imax

||go||1
(11)

where go is the impulse response of Go(z) and
||go||1 =

∑∞
k=0 |go(k)|. The frequency response of this

bound is shown in Fig. 6 as the dotted-black curve. In
practice, we find that this bound is overly conservative. An
alternative is to choose

(∆uX)max = ||Go(z)||∞ ≈ 0.1980, (12)

which results in the dashed-black curve in Fig. 6. Although
(12) is only sufficient to guarantee (10) for sinusoidal inputs,
in practice we find that enforcing (12) does lead to the current
staying under 100 mA.

Finally, the slew-rate limit used in the MPC/linear feedback
controller must be discounted from (12) to account for the
inverse drift compensator. This adjustment for the inverse drift
operator follows essentially the same argument as above. We
have

(∆u)max ≤
(∆uX)max

||G−1
d (z)||∞

≈ 0.167 (13)

IV. CONTROL SETUP

The constraint (13) can be remodeled as a pure saturating
constraint if we work with an incremental form of Gvib which
has as its input ∆uk := uk − uk−1, rather than uk. This is
attractive because it not only allows us to directly penalize the
rate of change in the optimal control problem but also renders
the constraint (13) as a box constraint on ∆u, enabling the use
of the computationally efficient Fast Gradient Method. Details
on the form of the FGM we use can be found in [21], [37]
while specifics about our implementation are discussed in [22].

A. The Incremental Form

To develop the required incremental form, we augment the
dynamics of Ĝvib = {A,B,C, 0} with a state xu(k) such that

xuk
= uk−1.

It follows that

x̄k+1 =

[
A B
0 1

]
x̄k +

[
B
1

]
∆uk (14a)

yk =
[
C 0

]
x̄k (14b)

x̄k :=

[
xk
xuk

]
(14c)

We call this system Ḡ = {Ā, B̄, C̄, 0}, which has n̄s = 23
states, 9 of which model delay. To solve the setpoint tracking
problem, we work in the error coordinates of Ḡ. For a
constant reference rss, in steady state we have ∆uss = 0 and
x̄ss = Nx̄rss where Nx̄ ∈ Rn̄s is found by solving[

Nx̄
Nu

]
=

[
I − Ā −B̄
C̄ 0

]−1 [
0
I

]
, (15)

which, due to the augmented pole at z = 1, will give Nu ≡ 0.
The error state, x̄ek = x̄k − x̄ss has dynamics

x̄ek+1
= Āx̄k + B̄∆uk − x̄ss
= Āx̄ek + B̄∆uk

because x̄ss is in the nullspace of (I − Ā).

B. Observer Design

To achieve zero-offset tracking (to constant disturbances),
we employ the disturbance estimator outlined in [38]. The
disturbance dynamics are modeled as a pure integrating dis-
turbance. The estimator dynamics are then given by[

x̂k+1

d̂k+1

]
= Am

[
x̂k
d̂k

]
+Bmuk + Lm(yk − ŷk) (16)

ŷk = Cm

[
x̂k
d̂k

]
(17)

where x̂ is our estimate of xk (not x̄k), d̂k is the disturbance
estimate, and

Am =

[
A Bd
0 1

]
, Bm =

[
B
0

]
Cm =

[
C Cd

]
, Lm =

[
Lx
Ld

]
(18)

It is shown in [38] that the gains Lx and Ld may be designed
separately such that the closed-loop poles Am − LmCm are
the same as σ(A−LxC)∪ σ(1−LdCd). We set Lx equal to
the steady-state solution of the discrete LQR problem applied
to the dual of Ĝvib, where R = 1, Q = αBBT and α is a
tuning parameter. We design Ld such that the disturbance pole
is placed at z = 0.8.

To achieve zero offset tracking, disturbance estimators re-
compute the steady-state target x̄ss at each time-step. Here, we
use an output disturbance model, so that Bd = 0 and Cd = I ,
which means that the reference is adjusted by subtracting d̂k.
In other words, at each time step, we need to compute

x̄e =

[
x̂k
xuk

]
−Nx̄(rk − d̂k).

This is slightly simpler than the case for an input disturbance
model (Cd = 0 and Bd 6= 0), which involves an additional
vector-scalar multiplication and an additional vector-vector
addition (see (21) in [38]). It is shown in [38] that output
disturbance and input disturbance estimators are equivalent
provided 1 is not an eigenvalue of A, which is the case
here, because we do not estimate the state xu. Thus, due
to the computational savings, we use the output disturbance
formulation.
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C. Closed-Loop Equations
Let us derive the closed-loop equations for the block di-

agram of Fig. 1 with the drift and hysteresis operators set
to the identity and with the controller given by a partitioned
feedback gain K = [Kx Ku]. Similarly, the observer gain is
partitioned as in (18). In closed-loop we do not estimate xu,
because it is perfectly known and we do not compute the state-
feedback portion of the control with d̂ because the disturbance
is uncontrollable from uk. From (14), (16) and (17) we have

x̂k+1 = Ax̂k +Buk + Lx(yk − ŷk) (19)

d̂k+1 = d̂k + Ld(yk − ŷk) (20)
xuk+1

= xuk
+ ∆uk, (21)

where yk is the plant output. The control increment ∆uk and
control uk are given by

∆uk = −
[
Kx Ku

] [ x̂k
xuk

]
+ N̄(rk − d̂k). (22)

uk = ∆uk + xuk
. (23)

In (22), N̄ , KNx̄ is the feedforward control gain, where Nx̄
is defined by (15). We can write (19)-(23) as the combined
state-space system

x̃k+1 = Ãx̃k + L̃yk + B̃N̄rk (24)

uk = −K̃x̃k + N̄rk (25)

where

Ã =

A−BKx − LxC B(1−Ku) −BN̄ − LxCd
−Kx 1−Ku −N̄
−LdC 0 1− LdCd


L̃ =

Lx0
Ld

 , B̃ =

B1
0

 , x̃k =

 x̂kxuk

d̂k

 ,
K̃ =

[
Kx Ku − 1 N̄

]
,

Taking the Z-transform of (24) and (25), we obtain

u(z) =N̄(1− K̃(zI − Ã)−1B̃)r(z)

− K̃(zI − Ã)−1L̃y(z). (26)

If G(z) (which need not be the same as our model Gvib) is
the transfer function of the plant, then the Z-transform of the
output y subject to an output disturbance d and control input
u is y(z) = G(z)u(z)+d(z). Combining this expression with
(26) we obtain

y(z) =
G(z)N̄(1−D2(z))

1 +G(z)D1(z)
r(z) +

1

1 +G(z)D1(z)
d(z)

(27)

where

D1(z) = K̃(zI − Ã)−1L̃

D2(z) = K̃(zI − Ã)−1B̃.

Thus, the loop gain is given by L(z) = G(z)D1(z) and we
define the sensitivity function as

S(z) ,
1

1 + L(z)
. (28)

Due to the disturbance estimator, S(z) will always have a zero
at z = 1 so that its DC-gain is zero. In Section VI, it will be
helpful to quantify how large the sensitivity function gain is
at small but non-zero frequencies. To this end, we define the
“integrated sensitivity”

SI(z) , S(z)
1

z − 1
. (29)

The DC-gain of SI(z) can then be used to quantify the low-
frequency gain of S(z).

Recall that the closed-loop poles are the transmission zeros
of 1 + L(z) and are the union of the controller poles and
observer poles, which can be seen through the separation
principle or manipulation of the matrix pencil describing the
transmission zeros. Moreover, in the first term of (27), the
observer poles are canceled by the transmission zeros of
(1 −D2(z)). Of course, these properties only hold when the
observer uses a perfect model of the plant. The advantage
in representing the closed-loop dynamics as (27) is that (i)
it is perfectly valid when the observer and plant dynamics
do not match and (ii) it exposes cleanly how to analyze the
robustness of our designs.

V. CONTROL DESIGNS

Consider the optimal control problem

min
v

zTNPzN +

N−1∑
i=0

zTi Qzi + 2zTi Svi + vTi Rvi (30a)

s.t. zi+1 =Āzi + B̄vi (30b)

z0 =[x̂Tk , x
T
uk

]T −Nx̄(rk − d̂k) (30c)
|vi| ≤(∆u)max. (30d)

where Q and R are symmetric matrices and the matrices
Q,R, S satisfy (2) and (3). The terminal cost P is the solution
of the DARE.

We consider two control strategies based on (30):
Constrained Model Predictive Control (MPC): With this strat-
egy, one solves (30a) online, which results in a sequence of
N optimal controls, {vi}N−1

i=0 . One then sets ∆uk = v0 and
discards the remaining vi. The process is repeated at the next
time step. With MPC, the saturator in Fig. 1 is superfluous
because the optimal control satisfies the constraints by design.
The goal with MPC is to directly account for the slew-rate
constraint as part of the control law itself and hope that this
results in increased performance.
Saturated Linear state feedback (SLF): Here, we eliminate the
constraint (30d). Thus,

∆uk = v0 = −Kz0

where K = (B̄TPB̄ + R)−1(B̄TPĀ + ST ), which is the
LQR feedback gain associated with Q, R, and S. In contrast
to MPC, with SLF, the saturator in Fig. 1 is necessary to
avoid exceeding our current limit. While this scheme is much
more computationally efficient than MPC, the fact that the
constraint is not directly accounted for typically means that
the performance requirements must be relaxed to maintain
stability (e.g., by increasing the control weight R), due to the
saturator.
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(a) (b)

Fig. 7: Root locus of closed-loop poles as a function of γ. Note that for clarity, the plant zeros are not shown. The black ×’s
indicate the poles of the open-loop plant. The black circles indicate the fictitious zeros, which are at the location of the desired
poles. (a) The constant-σ scheme with σ = 0.9. (b) The chosen-ζ scheme.

In the next two subsections, we deal with the problem of
designing the weighting matrices Q, R, and S.

A. Control Weight Selection
Let Q = FFT for some vector F ∈ Rn̄s , S = F , and

R = 1+γ where γ is a scalar parameter. Consider the fictitious
output

ηk = FT x̄k + vk. (31)

Then the running cost portion of (30a) can be written as
N−1∑
i=0

ηTi ηi + γvTi vi. (32)

As the control weight γ becomes small, the closed-loop
poles of the unconstrained LQR will move to the zeros of
{A,B, FT , 1}. This is illustrated in Fig. 7 for two different
F vectors (discussed further later in this subsection). Thus,
we can effectively achieve pole-placement through the proper
design of F and by taking γ to be small. With this selection
of Q and S, (3) becomes

FFT
(

1− 1

1 + γ

)
≥ 0 (33)

which holds for all γ ≥ 0. However, numerical difficulties
tend to arise in computing P when γ is too close to zero.
Nonetheless, one can usually take γ to be small enough that
the difference between the desired pole locations and their
actual locations is negligible. The direct feedthrough in (31)
results in the cross-weighting term S and is necessary if we
wish to endow the fictitious system with n̄s zeros in order to
place all n̄s poles.

Through elementary block row and column operations, it is
straightforward to show that the zeros of {A,B, FT , 1} are the
same as the solutions of the generalized eigenvalue problem[

(A−BFT ) 0
0 1

]
−
[
zI 0
0 0

]
= 0.

Thus, one may find F via standard pole placement techniques.
Certainly, in the case of the SLF state feedback controller,

one could simply use a pole-placement design to start with.
However, the method here has two advantages: (i) it permits a
straightforward comparison to the MPC design (which, in the
present formulation, requires weighting matrices, not simple
pole locations) and (ii) the design becomes parametrized by
the scalar parameter γ which makes de-rating the design easy.
In contrast, with standard pole-placement, it is not clear how
to “back-off” the design if the slew-rate constraint is violated
to the extent that instability results.

We consider two methods to choose a set of desired pole
locations. The first method we call “constant-σ” (CS). The idea
is to move all complex poles such that they lie on a circle with
a specified radius, which endows them all with the same time
constant. Here, we select the radius as σ = 0.9.

The second scheme, which we call “choose-ζ” (CZ), keeps
the natural frequency of each complex pole unchanged but
specifies a damping ratio ζ. As we will see in the next
section, this approach generally yields slower settling times
than the constant-σ method: however it tends to result in
slightly smaller residual oscillations and is the same scheme
we considered previously in [22], [39], and we include it here
so that these results can be evaluated in light of our prior work.

For both cases, we place the 9 poles corresponding to the
delay at the roots of unity with a radius chosen more or less
arbitrarily at σ = 0.25. Fig. 7 shows root locus-like plots for
each scenario as a function of γ. As γ approaches zero, the
closed-loop poles approach the designed fictitious zeros, which
are indicated by black circles.

B. Selecting γ
The choice of γ has a significant effect on system per-

formance. Because this effect differs between simulation and
experiment, we explore that aspect of the tuning in the next
section.
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VI. SIMULATED VS EXPERIMENTAL PERFORMANCE AND
DEPENDENCE ON γ

Fig. 8: The sequence of step commands used to test the control
laws. The red circles indicate the 5th and 24th reference.
The response to these references are shown in closer detail
in Fig. 11a and 11b.

The goal of this section is to explore how the simulation
and experimental performance of MPC and SLF (for both pole
placement schemes) depends on the control weight γ and to
determine to what extent, if any, MPC provides a benefit. In
all simulations and experiments the MPC control horizon is
N = 22.

We tested the experimental and simulation performance
of the SLF and MPC control schemes using a sequence of
24 reference commands. The first 20 references we selected
randomly within the range [−32.5 µm, 35µm]. We chose the
final four references as 0 µm, 35 µm, −32.5 µm, and 0 µm, to
exercise the full usable range of the stage2. This sequence of
references is shown in Fig. 8. Using a sequence of randomly
generated references (rather than, e.g., a single reference or
several references beginning from rest) has several benefits:
(i) it is representative of the type of references seen in a
compressive sensing imaging scenario [18]; (ii) it eliminates
the possibility of cherry picking specific reference values
where one control law does; better and (iii) using a sequence
of references will help to draw out the deleterious effects of
imperfections in the hysteresis and drift inversion.

To explore the performance dependence on γ, we ran a
series of experiments and simulations across a grid of γ’s
ranging from γ = 10−5 to γ = 400. Each simulation was run
once and each experiment was conducted 8 times. We define
the settling time in an absolute sense. Specifically, the settle
boundary is 70 µm/512, which corresponds to settling within
one pixel of a 512 by 512 pixel image for the given range.
Let tji (γ`) represent the settling time of the ith reference for
the jth experimental run using the `th γ in our grid. Then the
total settling time of the jth experiment is Tj =

∑24
i=1 t

j
i (γ`).

The sample mean of the total settling times for a specific γ`
is

T̄ (γ`) =
1

8

8∑
j=1

Tj(γ`). (34)

Fig. 9 plots the mean of the total experimental settling times
(i.e., T̄ (γ`)) vs γ as the red (MPC) and black (SLF) dots

2For references larger than 35 µm, the control signal saturates; for refer-
ences smaller than -32.5 µm, the sensor saturates due to a bias in the stage.

with error bars. The left panel shows the results for the CS
scheme and right panel shows the results for the CZ scheme.
The simulation settling times are shown in Fig. 10. Here, the
MPC simulations are indicated by the red circles and the SLF
simulations are indicated by the black dots. For reference, the
actual values of the plotted data are shown in Tables IIa and
IIb.

Note the γs used for CS and CZ differ. Simulations in-
dicated that, with a control horizon of N = 22, the MPC
controller would fail to stabilize the system for the largest
setpoints if γ was taken much smaller than 10−3 (resp., 10−5)
for CS (resp., CZ). Similarly, due to saturating ∆uk, the SLF
control laws will be unstable for γ smaller than about 7.5
(resp., 3.5) for CS (resp., CZ). We remark on the γ values
46.4 (for CS) and 50.9 (for CZ) in the next subsection.

For the smallest tested values of γ, Fig. 11a shows zoomed-
in experimental trajectories of the four controllers for refer-
ences 5 and 24 (circled in Fig. 8). The fastest experimental
settling times occur for γ = 100 for the CS scheme and γ = 25
for the CZ scheme. Zoomed-in experimental trajectories for
these values of γ are shown in Fig.11b, also for references 5
and 24.

For all of the experimental trajectories, the largest measured
power amplifier current was 98.5 mA, indicating success in
respecting the 100 mA current limit.

A. Discussion
In both simulation and experiment, MPC is able to utilize a

much smaller γ than SLF. In the simulation results, increasing
γ results in an increased total settling. This is as one would
expect, because nominal closed-loop bandwidth decreases as
γ increases, as shown by the solid black curves in Fig. 10.
Interestingly, this trend does not hold in the experimental
results. Up to about γ = 100 for CS and γ = 25 for CZ,
total settling time decreases as γ increases in the experimental
results. This means, e.g., that when γ = 10−5 in the CZ MPC
experiment, the total settling time is nearly 3 times slower than
the simulation; when γ = 25 the experiment is only 1.3 times
slower than simulation.

These trends can be explained by analyzing how robustness
depends on γ. First, recall from Sections III-B and III-C that
our overall control loop inverts imperfect models of hysteresis
and drift. Errors in these inversions will show up as model
uncertainty at low frequencies. Thus, we expect that when the
gain of the sensitivity function at low frequencies is small, then
the effect of these uncertainties will be reduced. To quantify
how the low-frequency gain of S (which is always zero at
DC) depends on γ, we computed the DC-gain of the integrated
sensitivity function SI , defined in (29), at a grid of γs. The
resulting parametric plot is shown as the black curves in Fig. 9,
which are plotted against the right axes. The experiments
using γ = 46.4 (for CS) and γ = 50.9 (for CZ) correspond to
the minimum of the respective |SI(1)| curves. Although the
decrease and subsequent increase in total settling time roughly
follows the |SI(1)| vs γ curve, the fastest experimental settling
times do not exactly match to the minima of |SI(1)|.

A complementary analysis is to consider how the gain
margin (GM) and phase margin (PM) change as γ increases.
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TABLE II: Total settling times for (a) the constant-σ and (b) choose-ζ state weighting schemes. The second and third columns
of each table are the simulation results while the fourth and fifth columns are the average of 8 experimental runs. SLF was
not run for the smallest γ values, as indicated by the dashes. All times are in milliseconds.

(a) Constant-σ

γ MPC-sim SLF-sim MPC-exp SLF-exp

10−3 112.6 – 252.6 –
10−2 112.7 – 254.2 –
10−1 112.7 – 252.4 –

1 113.3 – 250.3 –
7.5 116.5 118.6 243.5 242.4
10 117.6 119.2 242.4 241.7
25 129.4 130.2 237.5 236.6

46.4 138.2 138.2 232.3 232.7
75 151.0 151.1 229.2 229.3
100 159.2 159.3 228.4 227.9
200 186.5 186.6 243.3 242.1
300 215.2 216.1 256.9 257.3
400 236.8 237.0 268.5 268.3

(b) Choose-ζ

γ MPC-sim SLF-sim MPC-exp SLF-exp

10−5 141.8 – 423.9 –
10−2 141.9 – 420.3 –
10−1 142.1 – 420.2 –

1 144.5 – 409.6 –
3.5 159.9 161.3 368.6 396.7
10 190.9 191.7 319.6 320.0
25 229.3 229.7 305.6 305.9

50.9 279.9 279.9 315.6 315.2
75 318.4 318.7 337.9 337.7

100 353.1 353.2 362.8 362.9
200 464.3 464.6 446.1 443.3
300 552.3 552.3 524.2 519.8
400 627.3 627.6 582.7 581.0

Fig. 9: (left) constant-σ. (right) choose-ζ. The black (SLF) and red (MPC) dots with error bars are the sample means of the
total settling times for different values of γ and are plotted against the left axes. The error bars represent one standard deviation.
The solid black curve is the DC-gain of the integrated sensitivity function SI(1) evaluated at different values of γ, plotted
against the right axes.

Fig. 10: (left) constant-σ. (right) choose-ζ. The red circles (MPC) and black dots (SLF) are the total simulated settling times
for different values of γ and are plotted against the left axes. The solid black curve is the closed-loop 3 dB bandwidth evaluated
for different values of γ, plotted against the right axes.
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(a) (b)

Fig. 11: Stage output (top row) and control increment (bottom row) experimental trajectories for references 5 and 24 (circled
in Fig. 8). (a) Trajectories for the smallest tested values of γ. (b) Trajectories for the values of γ resulting in the fastest total
experimental settling time. As indicated in (12), (∆uX)max = 0.1980.

Parametric plots of these metrics (computed from the loop
gain L(z)) are shown in Fig. 12. Here, we see that for both
pole-placement scenarios, robustness in terms of GM and PM
increases monotonically as γ increases and is quite poor for
the smallest values of γ.

Ultimately, the fastest experimental settling time which we
can acheive for either pole-placement scenario is a trade-off
between the robustness metrics GM, PM and |SI(1)| and the
decrease in nominal closed-loop bandwidth as γ increases.
Determining the precise nature of this trade-off would re-
quire precise knowledge of the model uncertainty, which is
unknown. Moreover, for the fastest experimental settling times
(i.e., γ = 100 for CS and γ = 25 for CZ), the difference in
trajectories and thus total settling times between MPC and
SLF is negligible. The close correspondence of MPC and SLF
trajectories for large γ is illustrated in Fig. 11b for references 5
and 24. The similarity in total settling times between MPC and
SLF holds for both simulation and experiment as can be seen
in the γ = 100 row of Table IIa and the γ = 25 row of IIb.
We conclude that, under the present state weighting schemes,
input constrained MPC provides no additional benefit.

B. Possible Objections

We envision three main criticisms to these results and
analysis. First, one might rightly point out that both MPC and
SLF are in general, non-linear, making the classical metrics
like PM, GM and |SI(1)| inapplicable. However, for any

setpoint, both SLF and MPC behave linearly in a neighborhood
around that setpoint. In other words, while the beginning of a
setpoint tracking maneuver may saturate the SLF controller
or put the MPC on its constraint boundary, the latter part
of that same maneuver will be governed by linear dynamics.
In that sense, the metrics GM and PM and the DC-gain of
the integrated sensitivity still provide some insight, which we
believe is manifested, e.g., in the correlation between overall
settling time and |SI(1)|.

A related objection is that the relatively poor GMs and PMs
could be improved through a loop transfer recovery (LTR)
method. However, the classic method as proposed in [40]
does not translate directly to discrete-time. Most efforts at
obtaining LTR-like results for discrete-time assume that (i)
a current estimator is used and (ii) CB 6= 0 [41]–[43]. When
considering MPC, especially at high sample rates, we need
to use a prediction estimator, since computing the control
action requires a significant portion of the sample period.
Also, for our system model, CB = 0, because the relative
degree is 12. These two factors preclude discrete-time LTR.
Even if these issues could be circumvented, we must bear in
mind that, in contrast to the continuous-time case, the full-
state feedback discrete-time LQR controller does not have a
guaranteed infinite gain margin nor a guaranteed phase margin
greater than 60◦. Rather, the guaranteed bounds for GM and
PM depend on the DARE solution P [44, p. 136], which in
turn depends on γ.

Finally, one might argue that if we implemented time-
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optimal MPC (TOMPC) [45] instead of MPC with a purely
quadratic cost, then MPC might show some benefit. Un-
fortunately, TOMPC requires the solution of a sequence of
optimal control problems with long horizons at each time step
[45]. Despite the advances in hardware and algorithms, such
methods remain too slow for systems with fast dynamics.

Fig. 12: GM and PM dependence on γ. PM is computed as the
smallest absolute difference between ∠L(ejωTs) and 180◦ for
ω such that |L(ejωTs)| = 1. Note that both loops are nominally
stable: negative PM means that a positive perturbation in
phase larger than |PM| at the crossover frequency will lead
to instability.

VII. CONCLUSIONS

In this paper we have given an account of developing a
setpoint tracking control law for a piezo stage, subject to a
current limitation in the piezo power amplifier. To account
for this current limit, we developed an incremental form with
∆uk as its control input and showed that, by conservatively
constraining ∆uk, we could keep power amplifier current
within the 100 mA limitation. To this end, we developed
MPC and saturated linear feedback control laws designed with
two separate state weighting schemes. In agreement with our
earlier work [22], our MPC controllers were able to utilize a
more aggressive control weight.

By considering the closed-loop performance across a wide
range control weights, we showed that the aggressive weights
(where MPC nominally provides some benefit), actually result
in worse experimental performance in terms of settling time.
We argued that this surprising result is due to model uncer-
tainty and showed that closed-loop robustness degrades with
small control weights.

It is possible that MPC could be beneficial if, rather than
constraining the slew rate of the low-voltage input, we con-
strained the output of a power amplifier current model. Such
an MPC problem could no longer be solved with the FGM,
though with a much larger FPGA, it may be possible that
the problem could be solved with the Alternating Direction
Method of Multipliers (ADMM) [21]. Such an alternative
formulation would only change the constraints, not the cost.
Thus, the robustness properties explored in this paper would

remain unchanged, though it is possible they would play
a smaller role. However, embedded platforms with FPGAs
capable implementing the ADDM at the required sample rate
remain expensive. Thus, even if the state constrained problem
could improve performance over SLF, this improvement would
need to be weighed against the cost of simply upgrading the
power amplifier.
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